34 resultados para Mean Absolute Scaled Error (MASE)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE Reproducible segmentation of brain tumors on magnetic resonance images is an important clinical need. This study was designed to evaluate the reliability of a novel fully automated segmentation tool for brain tumor image analysis in comparison to manually defined tumor segmentations. METHODS We prospectively evaluated preoperative MR Images from 25 glioblastoma patients. Two independent expert raters performed manual segmentations. Automatic segmentations were performed using the Brain Tumor Image Analysis software (BraTumIA). In order to study the different tumor compartments, the complete tumor volume TV (enhancing part plus non-enhancing part plus necrotic core of the tumor), the TV+ (TV plus edema) and the contrast enhancing tumor volume CETV were identified. We quantified the overlap between manual and automated segmentation by calculation of diameter measurements as well as the Dice coefficients, the positive predictive values, sensitivity, relative volume error and absolute volume error. RESULTS Comparison of automated versus manual extraction of 2-dimensional diameter measurements showed no significant difference (p = 0.29). Comparison of automated versus manual segmentation of volumetric segmentations showed significant differences for TV+ and TV (p<0.05) but no significant differences for CETV (p>0.05) with regard to the Dice overlap coefficients. Spearman's rank correlation coefficients (ρ) of TV+, TV and CETV showed highly significant correlations between automatic and manual segmentations. Tumor localization did not influence the accuracy of segmentation. CONCLUSIONS In summary, we demonstrated that BraTumIA supports radiologists and clinicians by providing accurate measures of cross-sectional diameter-based tumor extensions. The automated volume measurements were comparable to manual tumor delineation for CETV tumor volumes, and outperformed inter-rater variability for overlap and sensitivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BackgroundAnatomical differences between humans and domestic mammals preclude the use of reported stereotactic approaches to the brainstem in animals. In animals, brainstem biopsies are required both for histopathological diagnosis of neurological disorders and for research purposes. Sheep are used as a translational model for various types of brain disease and therefore a species-specific approach needs to be developed. The aim of the present study was to establish a minimally invasive, accurate and reproducible stereotactic approach to the brainstem of sheep, using the magnetic resonance imaging guided BrainsightTM frameless stereotactic system.ResultsA transoccipital transcerebellar approach with an entry point in the occipital bone above the vermis between the transverse sinus and the external occipital protuberance was chosen. This approach provided access to the target site in all heads. The overall mean needle placement error was 1.85¿±¿1.22 mm.ConclusionsThe developed transoccipital transcerebellar route is short, provides accurate access to the ovine caudal cranial fossa and is a promising approach to be assessed further in live animals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since 2010, the client base of online-trading service providers has grown significantly. Such companies enable small investors to access the stock market at advantageous rates. Because small investors buy and sell stocks in moderate amounts, they should consider fixed transaction costs, integral transaction units, and dividends when selecting their portfolio. In this paper, we consider the small investor’s problem of investing capital in stocks in a way that maximizes the expected portfolio return and guarantees that the portfolio risk does not exceed a prescribed risk level. Portfolio-optimization models known from the literature are in general designed for institutional investors and do not consider the specific constraints of small investors. We therefore extend four well-known portfolio-optimization models to make them applicable for small investors. We consider one nonlinear model that uses variance as a risk measure and three linear models that use the mean absolute deviation from the portfolio return, the maximum loss, and the conditional value-at-risk as risk measures. We extend all models to consider piecewise-constant transaction costs, integral transaction units, and dividends. In an out-of-sample experiment based on Swiss stock-market data and the cost structure of the online-trading service provider Swissquote, we apply both the basic models and the extended models; the former represent the perspective of an institutional investor, and the latter the perspective of a small investor. The basic models compute portfolios that yield on average a slightly higher return than the portfolios computed with the extended models. However, all generated portfolios yield on average a higher return than the Swiss performance index. There are considerable differences between the four risk measures with respect to the mean realized portfolio return and the standard deviation of the realized portfolio return.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this chapter a low-cost surgical navigation solution for periacetabular osteotomy (PAO) surgery is described. Two commercial inertial measurement units (IMU, Xsens Technologies, The Netherlands), are attached to a patient’s pelvis and to the acetabular fragment, respectively. Registration of the patient with a pre-operatively acquired computer model is done by recording the orientation of the patient’s anterior pelvic plane (APP) using one IMU. A custom-designed device is used to record the orientation of the APP in the reference coordinate system of the IMU. After registration, the two sensors are mounted to the patient’s pelvis and acetabular fragment, respectively. Once the initial position is recorded, the orientation is measured and displayed on a computer screen. A patient-specific computer model generated from a pre-operatively acquired computed tomography (CT) scan is used to visualize the updated orientation of the acetabular fragment. Experiments with plastic bones (7 hip joints) performed in an operating room comparing a previously developed optical navigation system with our inertial-based navigation system showed no statistical difference on the measurement of acetabular component reorientation (anteversion and inclination). In six out of seven hip joints the mean absolute difference was below five degrees for both anteversion and inclination.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE Vestibular neuritis is often mimicked by stroke (pseudoneuritis). Vestibular eye movements help discriminate the two conditions. We report vestibulo-ocular reflex (VOR) gain measures in neuritis and stroke presenting acute vestibular syndrome (AVS). METHODS Prospective cross-sectional study of AVS (acute continuous vertigo/dizziness lasting >24 h) at two academic centers. We measured horizontal head impulse test (HIT) VOR gains in 26 AVS patients using a video HIT device (ICS Impulse). All patients were assessed within 1 week of symptom onset. Diagnoses were confirmed by clinical examinations, brain magnetic resonance imaging with diffusion-weighted images, and follow-up. Brainstem and cerebellar strokes were classified by vascular territory-posterior inferior cerebellar artery (PICA) or anterior inferior cerebellar artery (AICA). RESULTS Diagnoses were vestibular neuritis (n = 16) and posterior fossa stroke (PICA, n = 7; AICA, n = 3). Mean HIT VOR gains (ipsilesional [standard error of the mean], contralesional [standard error of the mean]) were as follows: vestibular neuritis (0.52 [0.04], 0.87 [0.04]); PICA stroke (0.94 [0.04], 0.93 [0.04]); AICA stroke (0.84 [0.10], 0.74 [0.10]). VOR gains were asymmetric in neuritis (unilateral vestibulopathy) and symmetric in PICA stroke (bilaterally normal VOR), whereas gains in AICA stroke were heterogeneous (asymmetric, bilaterally low, or normal). In vestibular neuritis, borderline gains ranged from 0.62 to 0.73. Twenty patients (12 neuritis, six PICA strokes, two AICA strokes) had at least five interpretable HIT trials (for both ears), allowing an appropriate classification based on mean VOR gains per ear. Classifying AVS patients with bilateral VOR mean gains of 0.70 or more as suspected strokes yielded a total diagnostic accuracy of 90%, with stroke sensitivity of 88% and specificity of 92%. CONCLUSION Video HIT VOR gains differ between peripheral and central causes of AVS. PICA strokes were readily separated from neuritis using gain measures, but AICA strokes were at risk of being misclassified based on VOR gain alone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE To evaluate a low-cost, inertial sensor-based surgical navigation solution for periacetabular osteotomy (PAO) surgery without the line-of-sight impediment. METHODS Two commercial inertial measurement units (IMU, Xsens Technologies, The Netherlands), are attached to a patient's pelvis and to the acetabular fragment, respectively. Registration of the patient with a pre-operatively acquired computer model is done by recording the orientation of the patient's anterior pelvic plane (APP) using one IMU. A custom-designed device is used to record the orientation of the APP in the reference coordinate system of the IMU. After registration, the two sensors are mounted to the patient's pelvis and acetabular fragment, respectively. Once the initial position is recorded, the orientation is measured and displayed on a computer screen. A patient-specific computer model generated from a pre-operatively acquired computed tomography scan is used to visualize the updated orientation of the acetabular fragment. RESULTS Experiments with plastic bones (eight hip joints) performed in an operating room comparing a previously developed optical navigation system with our inertial-based navigation system showed no statistically significant difference on the measurement of acetabular component reorientation. In all eight hip joints the mean absolute difference was below four degrees. CONCLUSION Using two commercially available inertial measurement units we show that it is possible to accurately measure the orientation (inclination and anteversion) of the acetabular fragment during PAO surgery and therefore to successfully eliminate the line-of-sight impediment that optical navigation systems have.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE To determine the effect of the use of iodinated contrast agents on the formation of DNA double-strand breaks during chest computed tomography (CT). MATERIALS AND METHODS This study was approved by the institutional review board, and written informed consent was obtained from all patients. This single-center study was performed at a university hospital. A total of 179 patients underwent contrast material-enhanced CT, and 66 patients underwent unenhanced CT. Blood samples were taken from these patients prior to and immediately after CT. In these blood samples, the average number of phosphorylated histone H2AX (γH2AX) foci per lymphocyte was determined with fluorescence microscopy. Significant differences between the number of foci that developed in both the presence and the absence of the contrast agent were tested by using an independent sample t test. RESULTS γH2AX foci levels were increased in both groups after CT. Patients who underwent contrast-enhanced CT had an increased amount of DNA radiation damage (mean increase ± standard error of the mean, 0.056 foci per cell ± 0.009). This increase was 107% ± 19 higher than that in patients who underwent unenhanced CT (mean increase, 0.027 foci per cell ± 0.014). CONCLUSION The application of iodinated contrast agents during diagnostic x-ray procedures, such as chest CT, leads to a clear increase in the level of radiation-induced DNA damage as assessed with γH2AX foci formation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES The aims of the study were to use cone beam computed tomography (CBCT) images of nasopalatine duct cysts (NPDC) and to calculate the diameter, surface area, and 3D-volume using a custom-made software program. Furthermore, any associations of dimensions of NPDC with age, gender, presence/absence of maxillary incisors/canines (MI/MC), endodontic treatment of MI/MC, presenting symptoms, and postoperative complications were evaluated. MATERIAL AND METHODS The study comprised 40 patients with a histopathologically confirmed NPDC. On preoperative CBCT scans, curves delineating the cystic borders were drawn in all planes and the widest diameter (in millimeter), surface area (in square millimeter), and volume (in cubic millimeter) were calculated. RESULTS The overall mean cyst diameter was 15 mm (range 7-47 mm), the mean cyst surface area 566 mm(2) (84-4,516 mm(2)), and the mean cyst volume 1,735 mm(3) (65-25,350 mm(3)). For 22 randomly allocated cases, a second measurement resulted in a mean absolute aberration of ±4.2 % for the volume, ±2.8 % for the surface, and ±4.9 % for the diameter. A statistically significant association was found for the CBCT determined cyst measurements and the need for preoperative endodontic treatment to MI/MC and for postoperative complications. CONCLUSION In the hands of a single experienced operator, the novel software exhibited high repeatability for measurements of cyst dimensions. Further studies are needed to assess the application of this tool for dimensional analysis of different jaw cysts and lesions including treatment planning. CLINICAL RELEVANCE Accurate radiographic information of the bone volume lost (osteolysis) due to expansion of a cystic lesion in three dimensions could help in personalized treatment planning.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Purpose Accurate three-dimensional (3D) models of lumbar vertebrae can enable image-based 3D kinematic analysis. The common approach to derive 3D models is by direct segmentation of CT or MRI datasets. However, these have the disadvantages that they are expensive, timeconsuming and/or induce high-radiation doses to the patient. In this study, we present a technique to automatically reconstruct a scaled 3D lumbar vertebral model from a single two-dimensional (2D) lateral fluoroscopic image. Methods Our technique is based on a hybrid 2D/3D deformable registration strategy combining a landmark-to-ray registration with a statistical shape model-based 2D/3D reconstruction scheme. Fig. 1 shows different stages of the reconstruction process. Four cadaveric lumbar spine segments (total twelve lumbar vertebrae) were used to validate the technique. To evaluate the reconstruction accuracy, the surface models reconstructed from the lateral fluoroscopic images were compared to the associated ground truth data derived from a 3D CT-scan reconstruction technique. For each case, a surface-based matching was first used to recover the scale and the rigid transformation between the reconstructed surface model Results Our technique could successfully reconstruct 3D surface models of all twelve vertebrae. After recovering the scale and the rigid transformation between the reconstructed surface models and the ground truth models, the average error of the 2D/3D surface model reconstruction over the twelve lumbar vertebrae was found to be 1.0 mm. The errors of reconstructing surface models of all twelve vertebrae are shown in Fig. 2. It was found that the mean errors of the reconstructed surface models in comparison to their associated ground truths after iterative scaled rigid registrations ranged from 0.7 mm to 1.3 mm and the rootmean squared (RMS) errors ranged from 1.0 mm to 1.7 mm. The average mean reconstruction error was found to be 1.0 mm. Conclusion An accurate, scaled 3D reconstruction of the lumbar vertebra can be obtained from a single lateral fluoroscopic image using a statistical shape model based 2D/3D reconstruction technique. Future work will focus on applying the reconstructed model for 3D kinematic analysis of lumbar vertebrae, an extension of our previously-reported imagebased kinematic analysis. The developed method also has potential applications in surgical planning and navigation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

RATIONALE In biomedical journals authors sometimes use the standard error of the mean (SEM) for data description, which has been called inappropriate or incorrect. OBJECTIVE To assess the frequency of incorrect use of SEM in articles in three selected cardiovascular journals. METHODS AND RESULTS All original journal articles published in 2012 in Cardiovascular Research, Circulation: Heart Failure and Circulation Research were assessed by two assessors for inappropriate use of SEM when providing descriptive information of empirical data. We also assessed whether the authors state in the methods section that the SEM will be used for data description. Of 441 articles included in this survey, 64% (282 articles) contained at least one instance of incorrect use of the SEM, with two journals having a prevalence above 70% and "Circulation: Heart Failure" having the lowest value (27%). In 81% of articles with incorrect use of SEM, the authors had explicitly stated that they use the SEM for data description and in 89% SEM bars were also used instead of 95% confidence intervals. Basic science studies had a 7.4-fold higher level of inappropriate SEM use (74%) than clinical studies (10%). LIMITATIONS The selection of the three cardiovascular journals was based on a subjective initial impression of observing inappropriate SEM use. The observed results are not representative for all cardiovascular journals. CONCLUSION In three selected cardiovascular journals we found a high level of inappropriate SEM use and explicit methods statements to use it for data description, especially in basic science studies. To improve on this situation, these and other journals should provide clear instructions to authors on how to report descriptive information of empirical data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a kernel density correlation based nonrigid point set matching method and shows its application in statistical model based 2D/3D reconstruction of a scaled, patient-specific model from an un-calibrated x-ray radiograph. In this method, both the reference point set and the floating point set are first represented using kernel density estimates. A correlation measure between these two kernel density estimates is then optimized to find a displacement field such that the floating point set is moved to the reference point set. Regularizations based on the overall deformation energy and the motion smoothness energy are used to constraint the displacement field for a robust point set matching. Incorporating this non-rigid point set matching method into a statistical model based 2D/3D reconstruction framework, we can reconstruct a scaled, patient-specific model from noisy edge points that are extracted directly from the x-ray radiograph by an edge detector. Our experiment conducted on datasets of two patients and six cadavers demonstrates a mean reconstruction error of 1.9 mm

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new image-guided microscope using augmented reality overlays has been developed. Unlike other systems, the novelty of our design consists in mounting a precise mini and low-cost tracker directly on the microscope to track the motion of the surgical tools and the patient. Correctly scaled cut-views of the pre-operative computed tomography (CT) stack can be displayed on the overlay, orthogonal to the optical view or even including the direction of a clinical tool. Moreover, the system can manage three-dimensional models for tumours or bone structures and allows interaction with them using virtual tools, showing trajectories and distances. The mean error of the overlay was 0.7 mm. Clinical accuracy has shown results of 1.1-1.8 mm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Clinical assessments after Total Knee Arthroplasty (TKA) show persisting pain after implantation in over 20% of patients. Impingement of soft tissue around the knee, due to imprecise geometry of the tibial implant, can be one reason for persisting ailment. Two hundred and thirty seven MRI scans were evaluated using an active contour detection algorithm (snake) to obtain a high-resolution mean anatomical shape of the tibial plateau. Differences between female and male, older and younger (40) and left and right averaged shapes were determined. The shapes obtained were asymmetric throughout. Absolute differences between the subgroups fell short of inter-individual variations represented by calculated one-sigma confidence intervals. Our results indicate that a differentiation in TKA tibial plateau design by gender, age, or side is of minor relevance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE    Segmentation of the proximal femur in digital antero-posterior (AP) pelvic radiographs is required to create a three-dimensional model of the hip joint for use in planning and treatment. However, manually extracting the femoral contour is tedious and prone to subjective bias, while automatic segmentation must accommodate poor image quality, anatomical structure overlap, and femur deformity. A new method was developed for femur segmentation in AP pelvic radiographs. METHODS    Using manual annotations on 100 AP pelvic radiographs, a statistical shape model (SSM) and a statistical appearance model (SAM) of the femur contour were constructed. The SSM and SAM were used to segment new AP pelvic radiographs with a three-stage approach. At initialization, the mean SSM model is coarsely registered to the femur in the AP radiograph through a scaled rigid registration. Mahalanobis distance defined on the SAM is employed as the search criteria for each annotated suggested landmark location. Dynamic programming was used to eliminate ambiguities. After all landmarks are assigned, a regularized non-rigid registration method deforms the current mean shape of SSM to produce a new segmentation of proximal femur. The second and third stages are iteratively executed to convergence. RESULTS    A set of 100 clinical AP pelvic radiographs (not used for training) were evaluated. The mean segmentation error was [Formula: see text], requiring [Formula: see text] s per case when implemented with Matlab. The influence of the initialization on segmentation results was tested by six clinicians, demonstrating no significance difference. CONCLUSIONS    A fast, robust and accurate method for femur segmentation in digital AP pelvic radiographs was developed by combining SSM and SAM with dynamic programming. This method can be extended to segmentation of other bony structures such as the pelvis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cramér Rao Lower Bounds (CRLB) have become the standard for expression of uncertainties in quantitative MR spectroscopy. If properly interpreted as a lower threshold of the error associated with model fitting, and if the limits of its estimation are respected, CRLB are certainly a very valuable tool to give an idea of minimal uncertainties in magnetic resonance spectroscopy (MRS), although other sources of error may be larger. Unfortunately, it has also become standard practice to use relative CRLB expressed as a percentage of the presently estimated area or concentration value as unsupervised exclusion criterion for bad quality spectra. It is shown that such quality filtering with widely used threshold levels of 20% to 50% CRLB readily causes bias in the estimated mean concentrations of cohort data, leading to wrong or missed statistical findings-and if applied rigorously-to the failure of using MRS as a clinical instrument to diagnose disease characterized by low levels of metabolites. Instead, absolute CRLB in comparison to those of the normal group or CRLB in relation to normal metabolite levels may be more useful as quality criteria. Magn Reson Med, 2015. © 2015 Wiley Periodicals, Inc.