98 resultados para Mamba Intestinal Toxin 1
Resumo:
Background Inappropriate cross talk between mammals and their gut microbiota may trigger intestinal inflammation and drive extra-intestinal immune-mediated diseases. Epithelial cells constitute the interface between gut microbiota and host tissue, and may regulate host responses to commensal enteric bacteria. Gnotobiotic animals represent a powerful approach to study bacterial-host interaction but are not readily accessible to the wide scientific community. We aimed at refining a protocol that in a robust manner would deplete the cultivable intestinal microbiota of conventionally raised mice and that would prove to have significant biologic validity. Methodology/Principal Findings Previously published protocols for depleting mice of their intestinal microbiota by administering broad-spectrum antibiotics in drinking water were difficult to reproduce. We show that twice daily delivery of antibiotics by gavage depleted mice of their cultivable fecal microbiota and reduced the fecal bacterial DNA load by 400 fold while ensuring the animals' health. Mice subjected to the protocol for 17 days displayed enlarged ceca, reduced Peyer's patches and small spleens. Antibiotic treatment significantly reduced the expression of antimicrobial factors to a level similar to that of germ-free mice and altered the expression of 517 genes in total in the colonic epithelium. Genes involved in cell cycle were significantly altered concomitant with reduced epithelial proliferative activity in situ assessed by Ki-67 expression, suggesting that commensal microbiota drives cellular proliferation in colonic epithelium. Conclusion We present a robust protocol for depleting conventionally raised mice of their cultivatable intestinal microbiota with antibiotics by gavage and show that the biological effect of this depletion phenocopies physiological characteristics of germ-free mice.
Resumo:
The large production of immunoglobulin (Ig)A is energetically costly. The fact that evolution retained this apparent luxury of intestinal class switch recombination to IgA within the human population strongly indicates that there must be a critical specific function of IgA for survival of the species. The function of IgA has been investigated in a series of different models that will be discussed here. While IgA has clear protective functions against toxins or in the context of intestinal viral infections, the function of IgA specific for non-pathogenic commensal bacteria remains unclear. In the context of the current literature we present a hypothesis where secretory IgA integrates as an additional layer of immune function into the continuum of intestinal CD4 T cell responses, to achieve a mutualistic relationship between the intestinal commensal microbiota and the host.
Resumo:
Clostridium perfringens type C causes fatal necrotizing enteritis in different mammalian hosts, most commonly in newborn piglets. Human cases are rare, but the disease, also called pigbel, was endemic in the Highlands of Papua New Guinea. Lesions in piglets and humans are very similar and characterized by segmental necro-hemorrhagic enteritis in acute cases and fibrino-necrotizing enteritis in subacute cases. Histologically, deep mucosal necrosis accompanied by vascular thrombosis and necrosis was consistently reported in naturally affected pigs and humans. This suggests common pathogenetic mechanisms. Previous in vitro studies using primary porcine aortic endothelial cells suggested that beta-toxin (CPB) induced endothelial damage contributes to the pathogenesis of C. perfringens type C enteritis in pigs. In the present study we investigated toxic effects of CPB on cultured primary human macro- and microvascular endothelial cells. In vitro, these cells were highly sensitive to CPB and reacted with similar cytopathic and cytotoxic effects as porcine endothelial cells. Our results indicate that porcine and human cell culture based in vitro models represent valuable tools to investigate the pathogenesis of this bacterial disease in animals and humans.
Resumo:
Glucose supply markedly changes during the transition to extrauterine life. In this study, we investigated diet effects on glucose metabolism in neonatal calves. Calves were fed colostrum (C; n = 7) or milk-based formula (F; n = 7) with similar nutrient content up to d 4 of life. Blood plasma samples were taken daily before feeding and 2 h after feeding on d 4 to measure glucose, lactate, nonesterified fatty acids, protein, urea, insulin, glucagon, and cortisol concentrations. On d 2, additional blood samples were taken to measure glucose first-pass uptake (FPU) and turnover by oral [U-(13)C]-glucose and i.v. [6,6-(2)H(2)]-glucose infusion. On d 3, endogenous glucose production and gluconeogenesis were determined by i.v. [U-(13)C]-glucose and oral deuterated water administration after overnight feed deprivation. Liver tissue was obtained 2 h after feeding on d 4 and glycogen concentration and activities and mRNA abundance of gluconeogenic enzymes were measured. Plasma glucose and protein concentrations and hepatic glycogen concentration were higher (P < 0.05), whereas plasma urea, glucagon, and cortisol (d 2) concentrations as well as hepatic pyruvate carboxylase mRNA level and activity were lower (P < 0.05) in group C than in group F. Orally administered [U-(13)C]-glucose in blood was higher (P < 0.05) but FPU tended to be lower (P < 0.1) in group C than in group F. The improved glucose status in group C resulted from enhanced oral glucose absorption. Metabolic and endocrine changes pointed to elevated amino acid degradation in group F, presumably to provide substrates to meet energy requirements and to compensate for impaired oral glucose uptake.
Resumo:
Clostridium perfringens type C isolates cause fatal, segmental necro-hemorrhagic enteritis in animals and humans. Typically, acute intestinal lesions result from extensive mucosal necrosis and hemorrhage in the proximal jejunum. These lesions are frequently accompanied by microvascular thrombosis in affected intestinal segments. In previous studies we demonstrated that there is endothelial localization of C. perfringens type C beta-toxin (CPB) in acute lesions of necrotizing enteritis. This led us to hypothesize that CPB contributes to vascular necrosis by directly damaging endothelial cells. By performing additional immunohistochemical studies using spontaneously diseased piglets, we confirmed that CPB binds to the endothelial lining of vessels showing early signs of thrombosis. To investigate whether CPB can disrupt the endothelium, we exposed primary porcine aortic endothelial cells to C. perfringens type C culture supernatants and recombinant CPB. Both treatments rapidly induced disruption of the actin cytoskeleton, cell border retraction, and cell shrinkage, leading to destruction of the endothelial monolayer in vitro. These effects were followed by cell death. Cytopathic and cytotoxic effects were inhibited by neutralization of CPB. Taken together, our results suggest that CPB-induced disruption of endothelial cells may contribute to the pathogenesis of C. perfringens type C enteritis.
Resumo:
The present study describes the occurrence of intestinal parasite infections in livestock guardian dogs and herding dogs. A total of 71 guardian dogs (more than half of the total number of guardian dogs in Switzerland) and 21 herding dogs were coprologically examined, using a combined sedimentation-flotation method. In 21 (23 %) of the dogs intestinal parasites were detected, and 8 (8.7 %) of these dogs shed either sporocysts of Sarcocystis sp. (n = 6) or taeniid eggs (n = 2). The evaluation of questionnaires providing data on age, origin and deworming schemes of the dogs completed the study.
Resumo:
The criteria for choosing relevant cell lines among a vast panel of available intestinal-derived lines exhibiting a wide range of functional properties are still ill-defined. The objective of this study was, therefore, to establish objective criteria for choosing relevant cell lines to assess their appropriateness as tumor models as well as for drug absorption studies.
Resumo:
Intestinal bacteria outnumber our own human cells in conditions of both health and disease. It has long been recognized that secretory antibody, particularly IgA, is produced in response to these microbes and hypothesized that this must play an important role in defining the relationship between a host and its intestinal microbes. However, the exact role of IgA and the mechanisms by which IgA can act are only beginning to be understood. In this review we attempt to unravel the complex interaction between so-called "natural," "primitive" (T-cell-independent), and "classical" IgA responses, the nature of the intestinal microbiota/intestinal pathogens and the highly flexible dynamic homeostasis of the mucosal immune system. Such an analysis reveals that low-affinity IgA is sufficient to protect the host from excess mucosal immune activation induced by harmless commensal microbes. However, affinity-maturation of "classical" IgA is essential to provide protection from more invasive commensal species such as segmented filamentous bacteria and from true pathogens such as Salmonellatyphimurium. Thus a correlation is revealed between "sophistication" of the IgA response and aggressiveness of the challenge. A second emerging theme is that more-invasive species take advantage of host inflammatory mechanisms to more successfully compete with the resident microbiota. In many cases, the function of IgA may be to limit such inflammatory responses, either directly by coagulating or inhibiting virulence of bacteria before they can interact with the host or by modulating immune signaling induced by host recognition. Therefore IgA appears to provide an added layer of robustness in the intestinal ecosystem, promoting "commensal-like" behavior of its residents.
Resumo:
With the advent of high through-put sequencing (HTS), the emerging science of metagenomics is transforming our understanding of the relationships of microbial communities with their environments. While metagenomics aims to catalogue the genes present in a sample through assessing which genes are actively expressed, metatranscriptomics can provide a mechanistic understanding of community inter-relationships. To achieve these goals, several challenges need to be addressed from sample preparation to sequence processing, statistical analysis and functional annotation. Here we use an inbred non-obese diabetic (NOD) mouse model in which germ-free animals were colonized with a defined mixture of eight commensal bacteria, to explore methods of RNA extraction and to develop a pipeline for the generation and analysis of metatranscriptomic data. Applying the Illumina HTS platform, we sequenced 12 NOD cecal samples prepared using multiple RNA-extraction protocols. The absence of a complete set of reference genomes necessitated a peptide-based search strategy. Up to 16% of sequence reads could be matched to a known bacterial gene. Phylogenetic analysis of the mapped ORFs revealed a distribution consistent with ribosomal RNA, the majority from Bacteroides or Clostridium species. To place these HTS data within a systems context, we mapped the relative abundance of corresponding Escherichia coli homologs onto metabolic and protein-protein interaction networks. These maps identified bacterial processes with components that were well-represented in the datasets. In summary this study highlights the potential of exploiting the economy of HTS platforms for metatranscriptomics.
Resumo:
This case describes evidence for a Shiga toxin-producing Escherichia coli (STEC) O146:H28 infection leading to hemolytic uremic syndrome in a neonate. STEC O146:H28 was linked hitherto with asymptomatic carriage in humans. Based on strain characteristics and genotyping data, the mother is a healthy carrier who transmitted the STEC during delivery. STEC strains belonging to the low-pathogenic STEC group must also be considered in the workup of neonatal hemolytic uremic syndrome.
Resumo:
Inflammatory reactions involve a network of chemical and molecular signals that initiate and maintain host response. In inflamed tissue, immune system cells generate opioid peptides that contribute to potent analgesia by acting on specific peripheral sensory neurons. In this study, we show that opioids also modulate immune cell function in vitro and in vivo. By binding to its specific receptor, the opioid receptor-specific ligand DPDPE triggers monocyte adhesion. Integrins have a key role in this process, as adhesion is abrogated in cells treated with specific neutralizing anti-alpha5beta1 integrin mAb. We found that DPDPE-triggered monocyte adhesion requires PI3Kgamma activation and involves Src kinases, the guanine nucleotide exchange factor Vav-1, and the small GTPase Rac1. DPDPE also induces adhesion of pertussis toxin-treated cells, indicating involvement of G proteins other than Gi. These data show that opioids have important implications in regulating leukocyte trafficking, adding a new function to their known effects as immune response modulators.
Resumo:
Coproscopic examination of 505 dogs originating from the western or central part of Switzerland revealed the presence (prevalence data) of the following helminthes: Toxocara canis (7.1%), hookworms (6.9%), Trichuris vulpis (5.5%), Toxascaris leonina (1.3%), Taeniidae (1.3%), Capillaria spp. (0.8%), and Diphyllobothrium latum (0.4%). Potential risk factors for infection were identified by a questionnaire: dogs from rural areas significantly more often had hookworms and taeniid eggs in their feces when compared to urban family dogs. Access to small rodents, offal, and carrion was identified as risk factor for hookworm and Taeniidae, while feeding of fresh and uncooked meat did not result in higher prevalences for these helminths. A group of 111 dogs was treated every 3 months with a combined medication of pyrantel embonate, praziquantel, and febantel, and fecal samples were collected for coproscopy in monthly intervals. Despite treatment, the yearly incidence of T. canis was 32%, while hookworms, T. vulpis, Capillaria spp., and Taeniidae reached incidences ranging from 11 to 22%. Fifty-seven percent of the 111 dogs had helminth eggs in their feces at least once during the 1-year study period. This finding implicates that an infection risk with potential zoonotic pathogens cannot be ruled out for the dog owner despite regular deworming four times a year.
Resumo:
Strains of [Actinobacillus] rossii, [Pasteurella] mairii and [Pasteurella] aerogenes can be isolated from abortion in swine. The RTX toxin Pax has previously been found only in those [P.] aerogenes strains isolated from abortion. Nothing is known about RTX toxins in field isolates of the other two species. To gain insight into the distribution of selected RTX toxin genes and their association with abortion, PCR screening for the pax, apxII and apxIII operons on 21 [A.] rossii and seven [P.] mairii isolates was done. Since species can be phenotypically misidentified, the study was backed up by a phylogenetic analysis of all strains based on 16S rRNA, rpoB and infB genes. The pax gene was detected in all [P.] mairii but not in [A.] rossii strains. No apx genes were found in [P.] mairii but different gene combinations for apx were detected in [A.] rossii strains. Most of these strains were positive for apxIII, either alone or in combination with apxII. Whereas pax was found to be associated to strains from abortion no such indication could be found with apx in [A.] rossii strains. Phylogenetically [A.] rossii strains formed a heterogeneous cluster separated from Actinobacillus sensu stricto. [P.] mairii strains clustered with [P.] aerogenes but forming a separate branch. The fact that [P.] aerogenes, [P.] mairii and [A.] rossii can phylogenetically clearly be identified and might contain distinct RTX toxin genes allows their proper diagnosis and will further help to investigate their role as pathogens.
Resumo:
The protozoan parasite Neospora caninum is one of the most important abortifacient organisms in cattle worldwide. The dog is known to act as definitive host although its potential role as infection source for bovines still remains unelucidated. The aim of the present study was to compile initial epidemiological data on the prevalence and incidence of N. caninum in Swiss dogs acting as definitive hosts. Thus, 249 Swiss dogs were investigated coproscopically in monthly intervals over a period of 1 year. A total of 3289 fecal samples was tested by the flotation technique. Among these, 202 were shown to contain Sarcocystis sp. (6.1%), 149 Cystoisospora sp. (=Isospora sp.; 4.5%) and 25 Hammondia/Neospora-like oocysts (HNlO) (0.7%). All but one sample containing HNlO were from different dogs; one dog shed HNlO at two subsequent time points. Calculation of the yearly incidence for HNlO resulted in the surprisingly high value of 9.2%. Farm dogs exhibited a higher incidence for HNlO than urban family dogs. Thirteen out of the 25 HNlO-samples showed sporulation after 5 days incubation at room temperature. HNlO were further differentiated by species-specific PCR. However, all HNlO-samples were negative for N. caninum, Hammondia heydorni and Toxoplasma gondii. One reason may be the low oocyst density found in most fecal samples, which did not permit us to carry out PCR under optimal conditions. Three out of the 25 HNlO-cases contained enough oocysts to allow further enrichment and purification by the flotation technique. Subsequently, twenty to fifty sporulated HNlO-oocysts were orally administered to Meriones unguiculatus. All gerbils were seronegative for N. caninum at 5 weeks p.i. A N. caninum-seroprevalence of 7.8% was determined by ELISA upon 1132 serum samples collected from dogs randomly selected by veterinarians among their clinical patients.
Resumo:
OBJECTIVE: The aim of this study was to assess the microcirculatory and metabolic consequences of reduced mesenteric blood flow. DESIGN: Prospective, controlled animal study. SETTING: The surgical research unit of a university hospital. SUBJECTS: A total of 13 anesthetized and mechanically ventilated pigs. INTERVENTIONS: Pigs were subjected to stepwise mesenteric blood flow reduction (15% in each step, n = 8) or served as controls (n = 5). Superior mesenteric arterial blood flow was measured with ultrasonic transit time flowmetry, and mucosal and muscularis microcirculatory perfusion in the small bowel were each measured with three laser Doppler flow probes. Small-bowel intramucosal Pco2 was measured by tonometry, and glucose, lactate (L), and pyruvate (P) were measured by microdialysis. MEASUREMENTS AND MAIN RESULTS: In control animals, superior mesenteric arterial blood flow, mucosal microcirculatory blood flow, intramucosal Pco2, and the lactate/pyruvate ratio remained unchanged. In both groups, mucosal blood flow was better preserved than muscularis blood flow. During stepwise mesenteric blood flow reduction, heterogeneous microcirculatory blood flow remained a prominent feature (coefficient of variation, approximately 45%). A 30% flow reduction from baseline was associated with a decrease in microdialysis glucose concentration from 2.37 (2.10-2.70) mmol/L to 0.57 (0.22-1.60) mmol/L (p < .05). After 75% flow reduction, the microdialysis lactate/pyruvate ratio increased from 8.6 (8.0-14.1) to 27.6 (15.5-37.4, p < .05), and arterial-intramucosal Pco2 gradients increased from 1.3 (0.4-3.5) kPa to 10.8 (8.0-16.0) kPa (p < .05). CONCLUSIONS: Blood flow redistribution and heterogeneous microcirculatory perfusion can explain apparently maintained regional oxidative metabolism during mesenteric hypoperfusion, despite local signs of anaerobic metabolism. Early decreasing glucose concentrations suggest that substrate supply may become crucial before oxygen consumption decreases.