23 resultados para Magnesium silicate


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND To date, the use of proton pump inhibitors (PPIs) has been associated with a low risk of hypomagnesaemia and associated adverse outcomes. We hypothesised that a better risk estimate could be derived from a large cohort of outpatients admitted to a tertiary emergency department (ED). METHODS A cross-sectional study was performed in 5118 patients who had measurements of serum magnesium taken on admission to a large tertiary care ED between January 2009 and December 2010. Hypomagnesaemia was defined as a serum magnesium concentration < 0.75 mmol/l. Demographical data, serum electrolyte values, data on medication, comorbidities and outcome with regard to length of hospital stay and mortality were analysed. RESULTS Serum magnesium was normally distributed where upon 1246 patients (24%) were hypomagnesaemic. These patients had a higher prevalence of out-of-hospital PPI use and diuretic use when compared with patients with magnesium levels > 0.75 mmol/l (both p < 0.0001). In multivariable regression analyses adjusted for PPIs, diuretics, renal function and the Charlson comorbidity index score, the association between use of PPIs and risk for hypomagnesaemia remained significant (OR = 2.1; 95% CI: 1.54-2.85). While mortality was not directly related to low magnesium levels (p = 0.67), the length of hospitalisation was prolonged in these patients even after adjustment for underlying comorbid conditions (p < 0.0001). CONCLUSION Use of PPIs predisposes patients to hypomagnesaemia and such to prolonged hospitalisation irrespective of the underlying morbidity, posing a critical concern.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deep geological storage of radioactive waste foresees cementitious materials as reinforcement of tunnels and as backfill. Bentonite is proposed to enclose spent fuel canisters and as drift seals. Sand/bentonite (s/b) is foreseen as backfill material of access galleries or as drift seals. The emplacement of cementitious material next to clay material generates an enormous chemical gradient in pore-water composition that drives diffusive solute transport. Laboratory studies and reactive transport modeling predicted significant mineral alteration at and near interfaces, mainly resulting in a decrease of porosity in bentonite. The goal of this thesis was to characterize and quantify the cement/bentonite interactions both spatially and temporally in laboratory experiments. A newly developed mobile X-ray transparent core infiltration device was used to perform X-ray computed tomography (CT) scans without interruption of running experiments. CT scans allowed tracking the evolution of the reaction plume and changes in core volume/diameter/density during the experiments. In total 4 core infiltration experiments were carried out for this study with the compacted and saturated cores consisting of MX-80 bentonite and sand/MX-80 bentonite mixture (s/b; 65/35%). Two different high-pH cementitious pore-fluids were infiltrated: a young (early) ordinary Portland cement pore-fluid (APWOPC; K+–Na+–OH-; pH 13.4; ionic strength 0.28 mol/kg) and a young ‘low-pH’ ESDRED shotcrete pore-fluid (APWESDRED; Ca2+–Na+–K+–formate; pH 11.4; ionic strength 0.11 mol/kg). The experiments lasted between 1 and 2 years. In both bentonite experiments, the hydraulic conductivity was strongly reduced after switching to high-pH fluids, changing eventually from an advective to a diffusion-dominated transport regime. The reduction was mainly induced by mineral precipitation and possibly partly also by high ionic strength pore-fluids. Both bentonite cores showed a volume reduction and a resulting transient flow in which pore-water was squeezed out during high-pH infiltration. The outflow chemistry was characterized by a high ionic strength, while chloride in the initial pore water got replaced as main anionic charge carrier by sulfate, originating from gypsum dissolution. The chemistry of the high-pH fluids got strongly buffered by the bentonite, consuming hydroxide and in case of APWESDRED also formate. Hydroxide got consumed by mineral reactions (saponite and possibly talc and brucite precipitation), while formate being affected by bacterial degradation. Post-mortem analysis showed reaction zones near the inlet of the bentonite core, characterized by calcium and magnesium enrichment, consisting predominately of calcite and saponite, respectively. Silica got enriched in the outflow, indicating dissolution of silicate-minerals, identified as preferentially cristobalite. In s/b, infiltration of APWOPC reduced the hydraulic conductivity strongly, while APWESDRED infiltration had no effect. The reduction was mainly induced by mineral precipitation and probably partly also by high ionic strength pore-fluids. Not clear is why the observed mineral precipitates in the APWESDRED experiment had no effect on the fluid flow. Both s/b cores showed a volume expansion along with decreasing ionic strengths of the outflow, due to mineral reactions or in case of APWESDRED infiltration also mediated by microbiological activity, consuming hydroxide and formate, respectively. The chemistry of the high-pH fluids got strongly buffered by the s/b. In the case of APWESDRED infiltration, formate reached the outflow only for a short time, followed by enrichment in acetate, indicating most likely biological activity. This was in agreement to post-mortem analysis of the core, observing black spots on the inflow surface, while the sample had a rotten-egg smell indicative of some sulfate reduction. Post-mortem analysis showed further in both cores a Ca-enrichment in the first 10 mm of the core due to calcite precipitation. Mg-enrichment was only observed in the APWOPC experiment, originating from newly formed saponite. Silica got enriched in the outflow of both experiments, indicating dissolution of silicate-minerals, identified in the OPC experiment as cristobalite. The experiments attested an effective buffering capacity for bentonite and s/b, a progressing coupled hydraulic-chemical sealing process and also the preservation of the physical integrity of the interface region in this setup with a total pressure boundary condition on the core sample. No complete pore-clogging was observed but the hydraulic conductivity got rather strongly reduced in 3 experiments, explained by clogging of the intergranular porosity (macroporosity). Such a drop in hydraulic conductivity may impact the saturation time of the buffer in a nuclear waste repository, although the processes and geometry will be more complex in repository situation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this blinded, randomised, prospective clinical trial was to determine whether the addition of magnesium sulphate to spinally-administered ropivacaine would improve peri-operative analgesia without impairing motor function in dogs undergoing orthopaedic surgery. Twenty client-owned dogs undergoing tibial plateau levelling osteotomy were randomly assigned to one of two treatment groups: group C (control, receiving hyperbaric ropivacaine by the spinal route) or group M (magnesium, receiving a hyperbaric combination of magnesium sulphate and ropivacaine by the spinal route). During surgery, changes in physiological variables above baseline were used to evaluate nociception. Arterial blood was collected before and after spinal injection, at four time points, to monitor plasma magnesium concentrations. Post-operatively, pain was assessed with a modified Sammarco pain score, a Glasgow pain scale and a visual analogue scale, while motor function was evaluated with a modified Tarlov scale. Assessments were performed at recovery and 1, 2 and 3 h thereafter. Fentanyl and buprenorphine were administered as rescue analgesics in the intra- and post-operative periods, respectively. Plasma magnesium concentrations did not increase after spinal injection compared to baseline. Group M required less intra-operative fentanyl, had lower Glasgow pain scores and experienced analgesia of longer duration than group C (527.0 ± 341.0 min vs. 176.0 ± 109.0 min). However, in group M the motor block was significantly longer, which limits the usefulness of magnesium for spinal analgesia at the investigated dose. Further research is needed to determine a clinically effective dose with shorter duration of motor block for magnesium used as an additive to spinal analgesic agents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the ectomycorrhizal caesalpiniaceous groves of southern Korup National Park, the dominant tree species, Microberlinia bisulcata, displays very poor in situ recruitment compared with its codominant, Tetraberlinia bifoliolata. The reported ex situ experiment tested whether availabilities of soil potassium and magnesium play a role. Seedlings of the two species received applications of K and Mg fertilizer in potted native soil in a local shade house, and their responses in terms of growth and nutrient concentrations were recorded over 2 years. Amended soil concentrations were also determined. Microberlinia responded strongly and positively in its growth to Mg, but less to K; Tetraberlinia responded weakly to both. Added Mg led to strongly increased Mg concentration for Microberlinia while added K changed that concentration only slightly; Tetraberlinia strongly increased its concentration of K with added K, but only somewhat its Mg concentration with added Mg. Additions of Mg and K had small but important antagonistic effects. Microberlinia is Mg-demanding and apparently Mg-limited in Korup soil; Tetraberlinia, whilst K-demanding, appeared not to be K-limited (for growth). Added K enhanced plant P concentrations of both species. Extra applied Mg may also be alleviating soil aluminum toxicity, and hence improving growth indirectly and especially to the benefit of Microberlinia. Mg appears to be essential for Microberlinia seedling growth and its low soil availability in grove soils at Korup may be an important contributing factor to its poor recruitment. Microberlinia is highly shade-intolerant and strongly light-responding, whilst Tetraberlinia is more shade-tolerant and moderately light-responding, which affords an interesting contrast with respect to their differing responses to Mg supply. The study revealed novel aspects of functional traits and likely niche-partitioning among ectomycorrhizal caesalps in African rain forests. Identifying the direct and interacting indirect effects of essential elements on tropical tree seedling growth presents a considerable challenge due the complex nexus of causes involved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biodegradable magnesium plate/screw osteosynthesis systems were implanted on the frontal bone of adult miniature pigs. The chosen implant geometries were based on existing titanium systems used for the treatment of facial fractures. The aim of this study was to evaluate the in vivo degradation and tissue response of the magnesium alloy WE43 with and without a plasma electrolytic surface coating. Of 14 animals, 6 received magnesium implants with surface modification (coated), 6 without surface modification (uncoated), and 2 titanium implants. Radiological examination of the skull was performed at 1, 4, and 8 weeks post-implantation. After euthanasia at 12 and 24 weeks, X-ray, computed tomography, and microfocus computed tomography analyses and histological and histomorphological examinations of the bone/implant blocks were performed. The results showed a good tolerance of the plate/screw system without wound healing disturbance. In the radiological examination, gas pocket formation was found mainly around the uncoated plates 4 weeks after surgery. The micro-CT and histological analyses showed significantly lower corrosion rates and increased bone density and bone implant contact area around the coated screws compared to the uncoated screws at both endpoints. This study shows promising results for the further development of coated magnesium implants for the osteosynthesis of the facial skeleton.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND The metabolism of sodium, potassium, and chloride and the acid-base balance are sometimes altered in cystic fibrosis. Textbooks and reviews only marginally address the homeostasis of magnesium in cystic fibrosis. METHODS We performed a search of the Medical Subject Headings terms (cystic fibrosis OR mucoviscidosis) AND (magnesium OR hypomagnes[a]emia) in the US National Library of Medicine and Excerpta Medica databases. RESULTS We identified 25 reports dealing with magnesium and cystic fibrosis. The results of the review may be summarized as follows. First, hypomagnesemia affects more than half of the cystic fibrosis patients with advanced disease; second, magnesemia, which is normally age-independent, relevantly decreases with age in cystic fibrosis; third, aminoglycoside antimicrobials frequently induce both acute and chronic renal magnesium-wasting; fourth, sweat magnesium concentration was normal in cystic fibrosis patients; fifth, limited data suggest the existence of an impaired intestinal magnesium balance. Finally, stimulating observations suggest that magnesium supplements might achieve an improvement in respiratory muscle strength and mucolytic activity of both recombinant and endogenous deoxyribonuclease. CONCLUSIONS The first comprehensive review of the literature confirms that, despite being one of the most prevalent minerals in the body, the importance of magnesium in cystic fibrosis is largely overlooked. In these patients, hypomagnesemia should be sought once a year. Furthermore, the potential of supplementation with this cation deserves more attention.