44 resultados para MUSCLE PROTEIN-SYNTHESIS


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dysferlin is a muscle protein involved in cell membrane repair and its deficiency is associated with muscular dystrophy. We describe that dysferlin is also expressed in leaky endothelial cells. In the normal central nervous system (CNS), dysferlin is only present in endothelial cells of circumventricular organs. In the inflamed CNS of patients with multiple sclerosis (MS) or in animals with experimental autoimmune encephalomyelitis, dysferlin reactivity is induced in endothelial cells and the expression is associated with vascular leakage of serum proteins. In MS, dysferlin expression in endothelial cells is not restricted to vessels with inflammatory cuffs but is also present in noninflamed vessels. In addition, many blood vessels with perivascular inflammatory infiltrates lack dysferlin expression in inactive lesions or in the normal-appearing white matter. In vitro, dysferlin can be induced in endothelial cells by stimulation with tumor necrosis factor-alpha. Hence, dysferlin is not only a marker for leaky brain vessels, but also reveals dissociation of perivascular inflammatory infiltrates and blood-brain barrier disturbance in multiple sclerosis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In animal models of Streptococcus pneumoniae meningitis, rifampin is neuroprotective in comparison to ceftriaxone. So far it is not clear whether this can be generalized for other protein synthesis-inhibiting antimicrobial agents. We examined the effects of the bactericidal protein synthesis-inhibiting clindamycin (n = 12) on the release of proinflammatory bacterial components, the formation of neurotoxic compounds and neuronal injury compared with the standard therapy with ceftriaxone (n = 12) in a rabbit model of pneumococcal meningitis. Analysis of the CSF and histological evaluation were combined with microdialysis from the hippocampal formation and the neocortex. Compared with ceftriaxone, clindamycin reduced the release of lipoteichoic acids from the bacteria (p = 0.004) into the CSF and the CSF leucocyte count (p = 0.011). This led to lower extracellular concentrations of hydroxyl radicals (p = 0.034) and glutamate (p = 0.016) in the hippocampal formation and a subsequent reduction of extracellular glycerol levels (p = 0.018) and neuronal apoptosis in the dentate gyrus (p = 0.008). The present data document beneficial effects of clindamycin compared with ceftriaxone on various parameters linked with the pathophysiology of pneumococcal meningitis and development of neuronal injury. This study suggests neuroprotection to be a group effect of bactericidal protein synthesis-inhibiting antimicrobial agents compared with the standard therapy with beta-lactam antibiotics in meningitis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Protein synthesis is inhibited during apoptosis. However, the translation of many mRNAs still proceeds driven by internal ribosome entry sites (IRESs). Here we show that the 5'UTR of hid and grim mRNAs promote translation of uncapped-mRNA reporters in cell-free embryonic extracts and that hid and grim mRNA 5'UTRs drive IRES-mediated translation. The translation of capped-reporters proceeds in the presence of cap competitor and in extracts where cap-dependent translation is impaired. We show that the endogenous hid and grim mRNAs are present in polysomes of heat-shocked embryos, indicating that cap recognition is not required for translation. In contrast, sickle mRNA is translated in a cap-dependent manner in all these assays. Our results show that IRES-dependent initiation may play a role in the translation of Drosophila proapoptotic genes and suggest a variety of regulatory pathways.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this study the hypothesis that triiodothyronine (T3) and growth hormone (GH) may have some direct or indirect effect on the regulation of GH-receptor/GH-binding protein (GHR/GHBP) gene transcription was tested. Different concentrations of T3 (0, 0.5, 2, 10 nmol/l) and GH (0, 10, 150 ng/ml) were added to human hepatoma (HuH7) cells cultured in serum-free hormonally-defined medium for 0, 1 and 2 h. Thereafter GHR/GHBP mRNA expression was quantitatively assessed by using PCR amplification. GH at a concentration of 10 ng/ml resulted in a significant increase of GHR/GHBP gene expression whereas a supraphysiological concentration of GH (150 ng/ml) caused a significant decrease of GHR/GHBP mRNA levels. The simultaneous addition of 0.5 nmol/l T3 to the variable concentrations of GH did not modify GHR/GHBP mRNA levels whereas the addition of 2 nmol/l up-regulated GHR/GHBP gene expression already after 1 h, an increase which was even more marked when 10 nmol/l of T3 was added. Interestingly, there was a positive correlation between the increase of GHR/GHBP mRNA levels and the T3 concentration used (r: 0.8). In addition, nuclear run-on experiments and GHBP determinations were performed which confirmed the changes in GHR/GHBP mRNA levels. Cycloheximide (10 microg/ml) did not alter transcription rate following GH addition but blocked GHR/GHBP gene transcription in T3 treated cells indicating that up-regulation of GHR/GHBP gene transcription caused by T3 requires new protein synthesis and is, therefore, dependent on indirect mechanisms. In conclusion, we present data showing that T3 on its own has a stimulatory effect on GHR/GHBP gene transcription which is indirect and additive to the GH-induced changes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

CD95 (Fas/Apo-1)-mediated apoptosis was shown to occur through two distinct pathways. One involves a direct activation of caspase-3 by large amounts of caspase-8 generated at the DISC (Type I cells). The other is related to the cleavage of Bid by low concentration of caspase-8, leading to the release of cytochrome c from mitochondria and the activation of caspase-3 by the cytochrome c/APAF-1/caspase-9 apoptosome (Type II cells). It is also known that the protein synthesis inhibitor cycloheximide (CHX) sensitizes Type I cells to CD95-mediated apoptosis, but it remains contradictory whether this effect also occurs in Type II cells. Here, we show that sub-lethal doses of CHX render both Type I and Type II cells sensitive to the apoptogenic effect of anti-CD95 antibodies but not to chemotherapeutic drugs. Moreover, Bcl-2-positive Type II cells become strongly sensitive to CD95-mediated apoptosis by the addition of CHX to the cell culture. This is not the result of a restraint of the anti-apoptotic effect of Bcl-2 at the mitochondrial level since CHX-treated Type II cells still retain their resistance to chemotherapeutic drugs. Therefore, CHX treatment is granting the CD95-mediated pathway the ability to bypass the mitochondria requirement to apoptosis, much alike to what is observed in Type I cells.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cystic fibrosis (CF) lung disease is characterized by infection with Pseudomonas aeruginosa and a sustained accumulation of neutrophils. In this study, we analyzed 1) the expression of MyD88-dependent TLRs on circulating and airway neutrophils in P. aeruginosa-infected CF patients, P. aeruginosa-infected non-CF bronchiectasis patients, and noninfected healthy control subjects and 2) studied the regulation of TLR expression and functionality on neutrophils in vitro. TLR2, TLR4, TLR5, and TLR9 expression was increased on airway neutrophils compared with circulating neutrophils in CF and bronchiectasis patients. On airway neutrophils, TLR5 was the only TLR that was significantly higher expressed in CF patients compared with bronchiectasis patients and healthy controls. Studies using confocal microscopy and flow cytometry revealed that TLR5 was stored intracellularly in neutrophils and was mobilized to the cell surface in a protein synthesis-independent manner through protein kinase C activation or after stimulation with TLR ligands and cytokines characteristic of the CF airway microenvironment. The most potent stimulator of TLR5 expression was the bacterial lipoprotein Pam(3)CSK(4). Ab-blocking experiments revealed that the effect of Pam(3)CSK(4) was mediated through cooperation of TLR1 and TLR2 signaling. TLR5 activation enhanced the phagocytic capacity and the respiratory burst activity of neutrophils, which was mediated, at least partially, via a stimulation of IL-8 production and CXCR1 signaling. This study demonstrates a novel mechanism of TLR regulation in neutrophils and suggests a critical role for TLR5 in neutrophil-P. aeruginosa interactions in CF lung disease.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In addition to its conventional role during protein synthesis, eukaryotic elongation factor 1A is involved in other cellular processes. Several regions of interaction between eukaryotic elongation factor 1A and the translational apparatus or the cytoskeleton have been identified, yet the roles of the different post-translational modifications of eukaryotic elongation factor 1A are completely unknown. One amino acid modification, which so far has only been found in eukaryotic elongation factor 1A, consists of ethanolamine-phosphoglycerol attached to two glutamate residues that are conserved between mammals and plants. We now report that ethanolamine-phosphoglycerol is also present in eukaryotic elongation factor 1A of the protozoan parasite Trypanosoma brucei, indicating that this unique protein modification is of ancient origin. In addition, using RNA-mediated gene silencing against enzymes of the Kennedy pathway, we demonstrate that phosphatidylethanolamine is a direct precursor of the ethanolamine-phosphoglycerol moiety. Down-regulation of the expression of ethanolamine kinase and ethanolamine-phosphate cytidylyltransferase results in inhibition of phosphatidylethanolamine synthesis in T. brucei procyclic forms and, concomitantly, in a block in glycosylphosphatidylinositol attachment to procyclins and ethanolamine-phosphoglycerol modification of eukaryotic elongation factor 1A.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The availability of recombinant human growth hormone (GH) has resulted in investigation of the role of GH in adulthood and the effects of GH replacement in the GH-deficient adult. These studies have led to the recognition of a specific syndrome of GH-deficiency, characterized by symptoms, signs and investigative findings. Adults with long-standing growth hormone deficiency are often overweight, have altered body composition, with reduced lean body mass (LBM), increased fat mass (FM), reduced total body water and reduced bone mass. In addition, there is reduced physical and cardiac performance, altered substrate metabolism and an abnormal lipid profile predisposing to the development of cardiovascular disease. Adults with GH deficiency report reduced psychological well-being and quality of life. These changes may contribute to the morbidity and premature mortality observed in hypopituitary adults on conventional replacement therapy. GH treatment restores LBM, reduces FM, increases total body water and increases bone mass. Following GH therapy, increases are recorded in exercise capacity and protein synthesis, and "favourable" alterations occur in plasma lipids. In addition, psychological well-being and quality of life improve with replacement therapy. GH is well tolerated; adverse effects are largely related to fluid retention and respond to dose adjustment. It is likely that GH replacement will become standard therapy for the hypopituitary adult in the near future. The benefits of GH replacement in the GH-deficient adult have been unequivocally demonstrated in studies lasting up to 3 years. The results of longer term studies are awaited to determine whether these benefits are sustained over a lifetime.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Periodontitis is an inflammatory disease caused by pathogenic microorganisms and characterized by the destruction of the periodontium. Obese individuals have an increased risk of periodontitis, and elevated circulating levels of adipokines, such as nicotinamide phosphoribosyltransferase (NAMPT), may be a pathomechanistic link between both diseases. The aim of this in vitro study was to examine the regulation of periodontal ligament (PDL) cells by NAMPT and its production under inflammatory and infectious conditions. NAMPT caused a significant upregulation of 9 genes and downregulation of 3 genes, as analyzed by microarray analysis. Eight of these genes could be confirmed by real-time PCR: NAMPT induced a significant upregulation of EGR1, MMP-1, SYT7, ITPKA, CCL2, NTM, IGF2BP3, and NRP1. NAMPT also increased significantly the MMP-1 and CCL2 protein synthesis. NAMPT was significantly induced by interleukin-1 β and the periodontal microorganism P. gingivalis. NAMPT may contribute to periodontitis through upregulation of MMP-1 and CCL2 in PDL cells. Increased NAMPT levels, as found in obesity, may therefore represent a mechanism whereby obesity could confer an increased risk of periodontitis. Furthermore, microbial and inflammatory signals may enhance the NAMPT synthesis in PDL cells and thereby contribute to the increased gingival and serum levels of this adipokine, as found in periodontitis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

OBJECTIVES This in vitro study was established to examine whether visfatin thought to be a link between periodontitis and obesity is produced by periodontal ligament (PDL) cells and, if so, whether its synthesis is modulated by microbial and/or biomechanical signals. MATERIALS AND METHODS PDL cells seeded on BioFlex® plates were exposed to the oral pathogen Fusobacterium nucleatum ATCC 25586 and/or subjected to biomechanical strain for up to 3 days. Gene expression of visfatin and toll-like receptors (TLR) 2 and 4 was analyzed by RT-PCR, visfatin protein synthesis by ELISA and immunocytochemistry, and NFκB nuclear translocation by immunofluorescence. RESULTS F. nucleatum upregulated the visfatin expression in a dose- and time-dependent fashion. Preincubation with neutralizing antibodies against TLR2 and TLR4 caused a significant inhibition of the F. nucleatum-upregulated visfatin expression at 1 day. F. nucleatum stimulated the NFκB nuclear translocation. Biomechanical loading reduced the stimulatory effects of F. nucleatum on visfatin expression at 1 and 3 days and also abrogated the F. nucleatum-induced NFκB nuclear translocation at 60 min. Biomechanical loading inhibited significantly the expression of TLR2 and TLR4 at 3 days. The regulatory effects of F. nucleatum and/or biomechanical loading on visfatin expression were also observed at protein level. CONCLUSIONS PDL cells produce visfatin, and this production is enhanced by F. nucleatum. Biomechanical loading seems to be protective against the effects of F. nucleatum on visfatin expression. CLINICAL RELEVANCE Visfatin produced by periodontal tissues could play a major role in the pathogenesis of periodontitis and the interactions with obesity and other systemic diseases.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Peptide transporters (PTRs) of the large PTR family facilitate the uptake of di- and tripeptides to provide cells with amino acids for protein synthesis and for metabolic intermediates. Although several PTRs have been structurally and functionally characterized, how drugs modulate peptide transport remains unclear. To obtain insight into this mechanism, we characterize inhibitor binding to the Escherichia coli PTR dipeptide and tripeptide permease A (DtpA), which shows substrate specificities similar to its human homolog hPEPT1. After demonstrating that Lys[Z-NO2]-Val, the strongest inhibitor of hPEPT1, also acts as a high-affinity inhibitor for DtpA, we used single-molecule force spectroscopy to localize the structural segments stabilizing the peptide transporter and investigated which of these structural segments change stability upon inhibitor binding. This characterization was done with DtpA embedded in the lipid membrane and exposed to physiologically relevant conditions. In the unbound state, DtpA adopts two main alternate conformations in which transmembrane α-helix (TMH) 2 is either stabilized (in ∼43% of DtpA molecules) or not (in ∼57% of DtpA molecules). The two conformations are understood to represent the inward- and outward-facing conformational states of the transporter. With increasing inhibitor concentration, the conformation characterized by a stabilized TMH 2 becomes increasingly prevalent, reaching ∼92% at saturation. Our measurements further suggest that Lys[Z-NO2]-Val interacts with discrete residues in TMH 2 that are important for ligand binding and substrate affinity. These interactions in turn stabilize TMH 2, thereby promoting the inhibited conformation of DtpA.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Small non-protein-coding RNA (ncRNA) molecules have been recognized recently as major contributors to regulatory networks in controlling gene expression in a highly efficient manner. While the list of validated ncRNAs that regulate crucial cellular processes grows steadily, not a single ncRNA has been identified that directly interacts and regulates the ribosome during protein biosynthesis (with the notable exceptions of 7SL RNA and tmRNA). All of the recently discovered regulatory ncRNAs that act on translation (e.g. microRNAs, siRNAs or antisense RNAs) target the mRNA rather than the ribosome. This is unexpected, given the central position the ribosome plays during gene expression. Furthermore it is strongly assumed that the primordial translation system in the ‘RNA world’ most likely received direct regulatory input from ncRNA-like cofactors. The fundamental question that we would like to ask is: Does the ‘RNA world still communicate’ with the ribosome? To address this question, we have analyzed the small ncRNA interactomes of ribosomes of prokaryotic (H. volcanii, S. aureus) and unicellular eukaryotic model organisms. Deep-sequencing and subsequent bioinformatic analyses revealed thousands of putative ribosome-associated ncRNAs. For a subset of these ncRNA candidates we have gathered experimental evidence that they are expressed in a stress-dependent manner and indeed directly target the ribosome. In the archaeon H. volcanii a tRNA-derived fragment was identified to target the small ribosomal subunit upon alkaline stress in vitro and in vivo. As a consequence of ribosome binding, this tRNA-fragment reduces protein synthesis by interfering with the peptidyl transferase activity. Our data reveal the ribosome as a novel target for small regulatory ncRNAs in all domains of life. Ribosome-bound ncRNAs are capable of fine tuning translation and might represent a so far largely unexplored class of regulatory sRNAs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Small non-protein-coding RNA (ncRNA) molecules have been recognized recently as major contributors to regulatory networks in controlling gene expression in a highly efficient manner. While the list of validated ncRNAs that regulate crucial cellular processes grows steadily, not a single ncRNA has been identified that directly interacts and regulates the ribosome during protein biosynthesis (with the notable exceptions of 7SL RNA and tmRNA). All of the recently discovered regulatory ncRNAs that act on translation (e.g. microRNAs, siRNAs or antisense RNAs) target the mRNA rather than the ribosome. This is unexpected, given the central position the ribosome plays during gene expression. Furthermore it is strongly assumed that the primordial translation system in the ‘RNA world’ most likely received direct regulatory input from ncRNA-like cofactors. The fundamental question that we would like to ask is: Does the ‘RNA world still communicate’ with the ribosome? To address this question, we have analyzed the small ncRNA interactomes of ribosomes of organisms from all three domains of life. Deep-sequencing and subsequent bioinformatic analyses revealed thousands of putative ribosome-associated ncRNAs.1,2 For a subset of these ncRNA candidates we have gathered experimental evidence that they are expressed in a stress-dependent manner and indeed directly target the ribosome. We show that some of these ribosome-bound small ncRNAs are capable of fine tuning protein synthesis in vitro and in vivo. Our data therefore reveal the ribosome as a novel target for small regulatory ncRNAs in all domains of life and suggest the existence of a so far largely unexplored mechanism of translation regulation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The functions of ribosomes in translation are complex and involve different types of activities critical for decoding the genetic code, linkage of amino acids via amide bonds to form polypeptide chains, as well as the release and proper targeting of the synthesized protein. Non-protein-coding RNAs (ncRNAs) have been recognized to be crucial in establishing regulatory networks.1 However all of the recently discovered ncRNAs involved in translation regulation target the mRNA rather than the ribosome. The main goal of this project is to identify potential novel ncRNAs that directly bind and possibly regulate the ribosome during protein biosynthesis. To address this question we applied various stress conditions to the archaeal model organism Haloferax volcanii and deep-sequenced the ribosome-associated small ncRNA interactome. In total we identified 6.250 ncRNA candidates. Significantly, we observed the emersed presence of tRNA-derived fragments (tRFs). These tRFs have been identified in all domains of life and represent a growing, yet functionally poorly understood, class of ncRNAs. Here we present evidence that tRFs from H. volcanii directly bind to ribosomes. In the presented genomic screen of the ribosome-associated RNome a 26 residue long fragment originating from the 5’ part of valine tRNA was by far the most abundant tRF. The Val-tRF is processed in a stress- dependent manner and was found to primarily target the small ribosomal subunit in vitro and in vivo. As a consequence of ribosome binding, Val-tRF reduces protein synthesis by interfering with peptidyl transferase activity. Therefore this tRF functions as ribosome-bound small ncRNA capable of regulating gene expression in H. volcanii under environmental stress conditions probably by fine-tuning the rate of protein production.2 Currently we are investigating the binding site of this tRF on the 30S subunit in more detail.