27 resultados para MU-OXALATO
Resumo:
The anionic cluster Pt-19(CO)(22)](4-) (1), of pentagonal symmetry, reacts with CO and AuPPh3+ fragments. Upon increasing the Au:Pt-19, molar ratio, different species are sequentially formed, but only the last two members of the series could be characterized by X-ray diffraction, namely, Pt-19(CO)(24)(mu(4)-AuPPh3)(3)](-) (2) and Pt-19(CO)(24){mu(4)-Au-2(PPh3)(2)}(2)] (3).The metallic framework of the starting cluster is completely modified after the addition of CO and AuL+, and both products display the same platinum core of trigonal symmetry, with closely packed metal atoms. The three AuL+ units cap three different square faces in 2, whereas four AuL+ fragments are grouped in two independent bimetallic units in the neutral cluster 3. Electrochemical and spectroelectrochemical studies on 2 showed that its redox ability is comparable with that of the homometallic 1.
Resumo:
Luminescence and energy transfer in [Zn1-xRux(bpy)3][NaAl1-yCry(ox)3] (x ≈ 0.01, y = 0.006 − 0.22; bpy = 2,2‘-bipyridine, ox = C2O42-) and [Zn1-x-yRuxOsy(bpy)3][NaAl(ox)3] (x ≈ 0.01, y = 0.012) are presented and discussed. Surprisingly, the luminescence of the isolated luminophores [Ru(bpy)3]2+ and [Os(bpy)3]2+ in [Zn(bpy)3][NaAl(ox)3] is hardly quenched at room temperature. Steady-state luminescence spectra and decay curves show that energy transfer occurs between [Ru(bpy)3]2+ and [Cr(ox)3]3- and between [Ru(bpy)3]2+ and [Os(bpy)3]2+ in [Zn1-xRux(bpy)3][NaAl1-yCry(ox)3] and [Zn1-x-yRuxOsy(bpy)3] [NaAl(ox)3], respectively. For a quantitative investigation of the energy transfer, a shell type model is developed, using a Monte Carlo procedure and the structural parameters of the systems. A good description of the experimental data is obtained assuming electric dipole−electric dipole interaction between donors and acceptors, with a critical distance Rc for [Ru(bpy)3]2+ to [Cr(ox)3]3- energy transfer of 15 Å and for [Ru(bpy)3]2+ to [Os(bpy)3]2+ energy transfer of 33 Å. These values are in good agreement with those derived using the Förster−Dexter theory.
Resumo:
Previous restriction analysis of cloned equine DNA and genomic DNA of equine peripheral blood mononuclear cells had indicated the existence of one c epsilon, one c alpha and up to six c gamma genes in the haploid equine genome. The c epsilon and c alpha genes have been aligned on a 30 kb DNA fragment in the order 5' c epsilon-c alpha 3'. Here we describe the alignment of the equine c mu and c gamma genes by deletion analysis of one IgM, four IgG and two equine light chain expressing heterohybridomas. This analysis establishes the existence of six c gamma genes per haploid genome. The genomic alignment of the cH-genes is 5' c mu/(/) c gamma 1/(/) c gamma 2/(/) c gamma 3/(/) c gamma 4/(/) c gamma 5/(/) c gamma 6/(/) c epsilon-c alpha 3', naming the c gamma genes according to their position relative to c mu. For three of the c gamma genes the corresponding IgG isotypes could be identified as IgGa for c gamma 1, IgG(T) for c gamma 3 and IgGb for c gamma 4.