17 resultados para MOLYBDENUM


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A large family of bifunctional 1,2,4-triazole molecular tectons (tr) has been explored for engineering molybdenum(VI) oxide hybrid solids. Specifically, tr ligands bearing auxiliary basic or acidic groups were of the type amine, pyrazole, 1H-tetrazole, and 1,2,4-triazole. The organically templated molybdenum(VI) oxide solids with the general compositions [MoO3(tr)], [Mo2O6(tr)], and [Mo2O6(tr)(H2O)2] were prepared under mild hydrothermal conditions or by refluxing in water. Their crystal structures consist of zigzag chains, ribbons, or helixes of alternating cis-{MoO4N2} or {MoO5N} polyhedra stapled by short [N–N]-tr bridges that for bitriazole ligands convert the motifs into 2D or 3D frameworks. The high thermal (235–350 °C) and chemical stability observed for the materials makes them promising for catalytic applications. The molybdenum(VI) oxide hybrids were successfully explored as versatile oxidation catalysts with tert-butyl hydroperoxide (TBHP) or aqueous H2O2 as an oxygen source, at 70 °C. Catalytic performances were influenced by the different acidic–basic properties and steric hindrances of coordinating organic ligands as well as the structural dimensionality of the hybrid.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cancer is one of the most severe and widespread diseases and an ideal treatment has not yet been found. In the last decades, cisplatinum was commonly applied in cancer therapy with very good results. However, serious side effects and resistant tumors necessitated the development of new antineoplastic agents, such as metallocenes dihalides. These are metal-based compounds exhibiting two cyclopentadienyl ligands and a cis-dihalide motif. They resemble the cis-chloro configuration of cisplatinum, which propounds a similar mode of action. Metallocenes comprising one of the transition metals titanium, molybdenum, vanadium, niobium, and zirconium as the metal center have been shown to be effective against several cancer cell lines. Evidence for the accumulation of metallocenes in the nucleus implied that DNA is one of the major targets. Although several studies reported adduct formation of metallocenes with nuclear DNA, as yet substantial information about the general binding pattern and the binding to higher-order structures is lacking. Mass spectrometry can fill this gap as it constitutes a powerful technique to investigate the formation of organometallic adducts. Presented data demonstrate that the two agents titanocene dichloride and molybdenocene dichloride bind to single-stranded DNA and RNA. Distinct fragment ions formed upon collision-induced dissociation help to unravel preferential binding sites within the oligonucleotides. Moreover, adducts with duplexes and quadruplexes shed light on the molecular mechanism of action.