25 resultados para MASS MODELS
Resumo:
A search has been performed for the experimental signature of an isolated photon with high transverse momentum, at least one jet identified as originating from a bottom quark, and high missing transverse momentum. Such a final state may originate from supersymmetric models with gauge-mediated supersymmetry breaking in events in which one of a pair of higgsino-like neutralinos decays into a photon and a gravitino while the other decays into a Higgs boson and a gravitino. The search is performed using the full dataset of 7 TeV proton-proton collisions recorded with the ATLAS detector at the LHC in 2011, corresponding to an integrated luminosity of 4.7 fb(-1). A total of 7 candidate events are observed while 7.5 +/- 2.2 events are expected from the Standard Model background. The results of the search are interpreted in the context of general gauge mediation to exclude certain regions of a benchmark plane for higgsino-like neutralino production.
Resumo:
A search is presented for direct chargino production based on a disappearing-track signature using 20.3 fb−1 of proton-proton collisions at s√=8 TeV collected with the ATLAS experiment at the LHC. In anomaly-mediated supersymmetry breaking (AMSB) models, the lightest chargino is nearly mass degenerate with the lightest neutralino and its lifetime is long enough to be detected in the tracking detectors by identifying decays that result in tracks with no associated hits in the outer region of the tracking system. Some models with supersymmetry also predict charginos with a significant lifetime. This analysis attains sensitivity for charginos with a lifetime between 0.1 and 10 ns, and significantly surpasses the reach of the LEP experiments. No significant excess above the background expectation is observed for candidate tracks with large transverse momentum, and constraints on chargino properties are obtained. In the AMSB scenarios, a chargino mass below 270 GeV is excluded at 95% confidence level.
Resumo:
We study the strength of the electroweak phase transition in models with two light Higgs doublets and a light SU(3)c triplet by means of lattice simulations in a dimensionally reduced effective theory. In the parameter region considered the transition on the lattice is significantly stronger than indicated by a 2-loop perturbative analysis. Within some ultraviolet uncertainties, the finding applies to MSSM with a Higgs mass mh ≈ 126 GeV and shows that the parameter region useful for electroweak baryogenesis is enlarged. In particular (even though only dedicated analyses can quantify the issue), the tension between LHC constraints after the 7 TeV and 8 TeV runs and frameworks where the electroweak phase transition is driven by light stops, seems to be relaxed.
Resumo:
Previous studies of the sediments of Lake Lucerne have shown that massive subaqueous mass movements affecting unconsolidated sediments on lateral slopes are a common process in this lake, and, in view of historical reports describing damaging waves on the lake, it was suggested that tsunamis generated by mass movements represent a considerable natural hazard on the lakeshores. Newly performed numerical simulations combining two-dimensional, depth-averaged models for mass-movement propagation and for tsunami generation, propagation and inunda- tion reproduce a number of reported tsunami effects. Four analysed mass-movement scenarios—three based on documented slope failures involving volumes of 5.5 to 20.8 9 106 m3—show peak wave heights of several metres and maximum runup of 6 to [10 m in the directly affected basins, while effects in neighbouring basins are less drastic. The tsunamis cause large-scale inundation over distances of several hundred metres on flat alluvial plains close to the mass-movement source areas. Basins at the ends of the lake experience regular water-level oscillations with characteristic periods of several minutes. The vulnerability of potentially affected areas has increased dramatically since the times of the damaging historical events, recommending a thorough evaluation of the hazard.
Resumo:
The ATLAS detector at the Large Hadron Collider is used to search for high-mass resonances decaying to dielectron or dimuon final states. Results are presented from an analysis of proton-proton (pp ) collisions at a center-of-mass energy of 8 TeV corresponding to an integrated luminosity of 20.3 fb −1 in the dimuon channel. A narrow resonance with Standard Model Z couplings to fermions is excluded at 95% confidence level for masses less than 2.79 TeV in the dielectron channel, 2.53 TeV in the dimuon channel, and 2.90 TeV in the two channels combined. Limits on other model interpretations are also presented, including a grand-unification model based on the E 6 gauge group, Z ∗ bosons, minimal Z' models, a spin-2 graviton excitation from Randall-Sundrum models, quantum black holes, and a minimal walking technicolor model with a composite Higgs boson.
Resumo:
The goal of this work was to increase the performance and to calibrate one of the ROSINA sensors, the Reflectron-type Time-Of-Flight mass spectrometer, currently flying aboard the ESA Rosetta spacecraft. Different optimization techniques were applied to both the lab and space models, and a static calibration was performed using different gas species expected to be detected in the vicinity of comet 67P/Churyumov-Gerasimenko. The database thus created was successfully applied to space data, giving consistent results with the other ROSINA sensors.
Resumo:
Aims. We present an inversion method based on Bayesian analysis to constrain the interior structure of terrestrial exoplanets, in the form of chemical composition of the mantle and core size. Specifically, we identify what parts of the interior structure of terrestrial exoplanets can be determined from observations of mass, radius, and stellar elemental abundances. Methods. We perform a full probabilistic inverse analysis to formally account for observational and model uncertainties and obtain confidence regions of interior structure models. This enables us to characterize how model variability depends on data and associated uncertainties. Results. We test our method on terrestrial solar system planets and find that our model predictions are consistent with independent estimates. Furthermore, we apply our method to synthetic exoplanets up to 10 Earth masses and up to 1.7 Earth radii, and to exoplanet Kepler-36b. Importantly, the inversion strategy proposed here provides a framework for understanding the level of precision required to characterize the interior of exoplanets. Conclusions. Our main conclusions are (1) observations of mass and radius are sufficient to constrain core size; (2) stellar elemental abundances (Fe, Si, Mg) are principal constraints to reduce degeneracy in interior structure models and to constrain mantle composition; (3) the inherent degeneracy in determining interior structure from mass and radius observations does not only depend on measurement accuracies, but also on the actual size and density of the exoplanet. We argue that precise observations of stellar elemental abundances are central in order to place constraints on planetary bulk composition and to reduce model degeneracy. We provide a general methodology of analyzing interior structures of exoplanets that may help to understand how interior models are distributed among star systems. The methodology we propose is sufficiently general to allow its future extension to more complex internal structures including hydrogen- and water-rich exoplanets.
Resumo:
Aims. We extend the results of planetary formation synthesis by computing the long-term evolution of synthetic systems from the clearing of the gas disk into the dynamical evolution phase. Methods. We use the symplectic integrator SyMBA to numerically integrate the orbits of planets for 100 Myr, using populations from previous studies as initial conditions. Results. We show that within the populations studied, mass and semimajor axis distributions experience only minor changes from post-formation evolution. We also show that, depending upon their initial distribution, planetary eccentricities can statistically increase or decrease as a result of gravitational interactions. We find that planetary masses and orbital spacings provided by planet formation models do not result in eccentricity distributions comparable to observed exoplanet eccentricities, requiring other phenomena, such as stellar fly-bys, to account for observed eccentricities.
Resumo:
Despite the strong increase in observational data on extrasolar planets, the processes that led to the formation of these planets are still not well understood. However, thanks to the high number of extrasolar planets that have been discovered, it is now possible to look at the planets as a population that puts statistical constraints on theoretical formation models. A method that uses these constraints is planetary population synthesis where synthetic planetary populations are generated and compared to the actual population. The key element of the population synthesis method is a global model of planet formation and evolution. These models directly predict observable planetary properties based on properties of the natal protoplanetary disc, linking two important classes of astrophysical objects. To do so, global models build on the simplified results of many specialized models that address one specific physical mechanism. We thoroughly review the physics of the sub-models included in global formation models. The sub-models can be classified as models describing the protoplanetary disc (of gas and solids), those that describe one (proto)planet (its solid core, gaseous envelope and atmosphere), and finally those that describe the interactions (orbital migration and N-body interaction). We compare the approaches taken in different global models, discuss the links between specialized and global models, and identify physical processes that require improved descriptions in future work. We then shortly address important results of planetary population synthesis like the planetary mass function or the mass-radius relationship. With these statistical results, the global effects of physical mechanisms occurring during planet formation and evolution become apparent, and specialized models describing them can be put to the observational test. Owing to their nature as meta models, global models depend on the results of specialized models, and therefore on the development of the field of planet formation theory as a whole. Because there are important uncertainties in this theory, it is likely that the global models will in future undergo significant modifications. Despite these limitations, global models can already now yield many testable predictions. With future global models addressing the geophysical characteristics of the synthetic planets, it should eventually become possible to make predictions about the habitability of planets based on their formation and evolution.
Resumo:
Context. Within the core accretion scenario of planetary formation, most simulations performed so far always assume the accreting envelope to have a solar composition. From the study of meteorite showers on Earth and numerical simulations, we know that planetesimals must undergo thermal ablation and disruption when crossing a protoplanetary envelope. Thus, once the protoplanet has acquired an atmosphere, not all planetesimals reach the core intact, i.e. the primordial envelope (mainly H and He) gets enriched in volatiles and silicates from the planetesimals. This change of envelope composition during the formation can have a significant effect on the final atmospheric composition and on the formation timescale of giant planets. Aims. We investigate the physical implications of considering the envelope enrichment of protoplanets due to the disruption of icy planetesimals during their way to the core. Particular focus is placed on the effect on the critical core mass for envelopes where condensation of water can occur. Methods. Internal structure models are numerically solved with the implementation of updated opacities for all ranges of metallicities and the software Chemical Equilibrium with Applications to compute the equation of state. This package computes the chemical equilibrium for an arbitrary mixture of gases and allows the condensation of some species, including water. This means that the latent heat of phase transitions is consistently incorporated in the total energy budget. Results. The critical core mass is found to decrease significantly when an enriched envelope composition is considered in the internal structure equations. A particularly strong reduction of the critical core mass is obtained for planets whose envelope metallicity is larger than Z approximate to 0.45 when the outer boundary conditions are suitable for condensation of water to occur in the top layers of the atmosphere. We show that this effect is qualitatively preserved even when the atmosphere is out of chemical equilibrium. Conclusions. Our results indicate that the effect of water condensation in the envelope of protoplanets can severely affect the critical core mass, and should be considered in future studies.