27 resultados para Longitudinal Data Analysis and Time Series
Resumo:
The present research analyses the adequacy of the widely used Career Satisfaction Scale (CSS; Greenhaus, Parasuraman, & Wormley, 1990) for measuring change over time. We used data of a sample of 1,273 professionals over a 5-year time period. First, we tested longitudinal measurement invariance of the CSS. Second, we analysed changes in career satisfaction by means of multiple indicator latent growth modelling (MLGM). Results revealed that the CSS can be reliably used in mean change analyses. Altogether, career satisfaction was relatively stable over time; however, we found significant variance in intra-individual growth trajectories and a negative correlation between the initial level of and changes in career satisfaction. Professionals who were initially highly satisfied became less satisfied over time. Theoretical and practical implications with respect to the construct of career satisfaction and its development over time (i.e., alpha, beta, and gamma change) are discussed.
Resumo:
Currently, a variety of linear and nonlinear measures is in use to investigate spatiotemporal interrelation patterns of multivariate time series. Whereas the former are by definition insensitive to nonlinear effects, the latter detect both nonlinear and linear interrelation. In the present contribution we employ a uniform surrogate-based approach, which is capable of disentangling interrelations that significantly exceed random effects and interrelations that significantly exceed linear correlation. The bivariate version of the proposed framework is explored using a simple model allowing for separate tuning of coupling and nonlinearity of interrelation. To demonstrate applicability of the approach to multivariate real-world time series we investigate resting state functional magnetic resonance imaging (rsfMRI) data of two healthy subjects as well as intracranial electroencephalograms (iEEG) of two epilepsy patients with focal onset seizures. The main findings are that for our rsfMRI data interrelations can be described by linear cross-correlation. Rejection of the null hypothesis of linear iEEG interrelation occurs predominantly for epileptogenic tissue as well as during epileptic seizures.
Resumo:
The original cefepime product was withdrawn from the Swiss market in January 2007 and replaced by a generic 10 months later. The goals of the study were to assess the impact of this cefepime shortage on the use and costs of alternative broad-spectrum antibiotics, on antibiotic policy, and on resistance of Pseudomonas aeruginosa toward carbapenems, ceftazidime, and piperacillin-tazobactam. A generalized regression-based interrupted time series model assessed how much the shortage changed the monthly use and costs of cefepime and of selected alternative broad-spectrum antibiotics (ceftazidime, imipenem-cilastatin, meropenem, piperacillin-tazobactam) in 15 Swiss acute care hospitals from January 2005 to December 2008. Resistance of P. aeruginosa was compared before and after the cefepime shortage. There was a statistically significant increase in the consumption of piperacillin-tazobactam in hospitals with definitive interruption of cefepime supply and of meropenem in hospitals with transient interruption of cefepime supply. Consumption of each alternative antibiotic tended to increase during the cefepime shortage and to decrease when the cefepime generic was released. These shifts were associated with significantly higher overall costs. There was no significant change in hospitals with uninterrupted cefepime supply. The alternative antibiotics for which an increase in consumption showed the strongest association with a progression of resistance were the carbapenems. The use of alternative antibiotics after cefepime withdrawal was associated with a significant increase in piperacillin-tazobactam and meropenem use and in overall costs and with a decrease in susceptibility of P. aeruginosa in hospitals. This warrants caution with regard to shortages and withdrawals of antibiotics.
Resumo:
Triggered event-related functional magnetic resonance imaging requires sparse intervals of temporally resolved functional data acquisitions, whose initiation corresponds to the occurrence of an event, typically an epileptic spike in the electroencephalographic trace. However, conventional fMRI time series are greatly affected by non-steady-state magnetization effects, which obscure initial blood oxygen level-dependent (BOLD) signals. Here, conventional echo-planar imaging and a post-processing solution based on principal component analysis were employed to remove the dominant eigenimages of the time series, to filter out the global signal changes induced by magnetization decay and to recover BOLD signals starting with the first functional volume. This approach was compared with a physical solution using radiofrequency preparation, which nullifies magnetization effects. As an application of the method, the detectability of the initial transient BOLD response in the auditory cortex, which is elicited by the onset of acoustic scanner noise, was used to demonstrate that post-processing-based removal of magnetization effects allows to detect brain activity patterns identical with those obtained using the radiofrequency preparation. Using the auditory responses as an ideal experimental model of triggered brain activity, our results suggest that reducing the initial magnetization effects by removing a few principal components from fMRI data may be potentially useful in the analysis of triggered event-related echo-planar time series. The implications of this study are discussed with special caution to remaining technical limitations and the additional neurophysiological issues of the triggered acquisition.
Resumo:
An important problem in unsupervised data clustering is how to determine the number of clusters. Here we investigate how this can be achieved in an automated way by using interrelation matrices of multivariate time series. Two nonparametric and purely data driven algorithms are expounded and compared. The first exploits the eigenvalue spectra of surrogate data, while the second employs the eigenvector components of the interrelation matrix. Compared to the first algorithm, the second approach is computationally faster and not limited to linear interrelation measures.
Resumo:
The accuracy of Global Positioning System (GPS) time series is degraded by the presence of offsets. To assess the effectiveness of methods that detect and remove these offsets, we designed and managed the Detection of Offsets in GPS Experiment. We simulated time series that mimicked realistic GPS data consisting of a velocity component, offsets, white and flicker noises (1/f spectrum noises) composed in an additive model. The data set was made available to the GPS analysis community without revealing the offsets, and several groups conducted blind tests with a range of detection approaches. The results show that, at present, manual methods (where offsets are hand picked) almost always give better results than automated or semi‒automated methods (two automated methods give quite similar velocity bias as the best manual solutions). For instance, the fifth percentile range (5% to 95%) in velocity bias for automated approaches is equal to 4.2 mm/year (most commonly ±0.4 mm/yr from the truth), whereas it is equal to 1.8 mm/yr for the manual solutions (most commonly 0.2 mm/yr from the truth). The magnitude of offsets detectable by manual solutions is smaller than for automated solutions, with the smallest detectable offset for the best manual and automatic solutions equal to 5 mm and 8 mm, respectively. Assuming the simulated time series noise levels are representative of real GPS time series, robust geophysical interpretation of individual site velocities lower than 0.2–0.4 mm/yr is therefore certainly not robust, although a limit of nearer 1 mm/yr would be a more conservative choice. Further work to improve offset detection in GPS coordinates time series is required before we can routinely interpret sub‒mm/yr velocities for single GPS stations.
Resumo:
SUMMARY Campylobacteriosis has been the most common food-associated notifiable infectious disease in Switzerland since 1995. Contact with and ingestion of raw or undercooked broilers are considered the dominant risk factors for infection. In this study, we investigated the temporal relationship between the disease incidence in humans and the prevalence of Campylobacter in broilers in Switzerland from 2008 to 2012. We use a time-series approach to describe the pattern of the disease by incorporating seasonal effects and autocorrelation. The analysis shows that prevalence of Campylobacter in broilers, with a 2-week lag, has a significant impact on disease incidence in humans. Therefore Campylobacter cases in humans can be partly explained by contagion through broiler meat. We also found a strong autoregressive effect in human illness, and a significant increase of illness during Christmas and New Year's holidays. In a final analysis, we corrected for the sampling error of prevalence in broilers and the results gave similar conclusions.
Resumo:
Seizure freedom in patients suffering from pharmacoresistant epilepsies is still not achieved in 20–30% of all cases. Hence, current therapies need to be improved, based on a more complete understanding of ictogenesis. In this respect, the analysis of functional networks derived from intracranial electroencephalographic (iEEG) data has recently become a standard tool. Functional networks however are purely descriptive models and thus are conceptually unable to predict fundamental features of iEEG time-series, e.g., in the context of therapeutical brain stimulation. In this paper we present some first steps towards overcoming the limitations of functional network analysis, by showing that its results are implied by a simple predictive model of time-sliced iEEG time-series. More specifically, we learn distinct graphical models (so called Chow–Liu (CL) trees) as models for the spatial dependencies between iEEG signals. Bayesian inference is then applied to the CL trees, allowing for an analytic derivation/prediction of functional networks, based on thresholding of the absolute value Pearson correlation coefficient (CC) matrix. Using various measures, the thus obtained networks are then compared to those which were derived in the classical way from the empirical CC-matrix. In the high threshold limit we find (a) an excellent agreement between the two networks and (b) key features of periictal networks as they have previously been reported in the literature. Apart from functional networks, both matrices are also compared element-wise, showing that the CL approach leads to a sparse representation, by setting small correlations to values close to zero while preserving the larger ones. Overall, this paper shows the validity of CL-trees as simple, spatially predictive models for periictal iEEG data. Moreover, we suggest straightforward generalizations of the CL-approach for modeling also the temporal features of iEEG signals.
Resumo:
Abstract: Near-infrared spectroscopy (NIRS) enables the non-invasive measurement of changes in hemodynamics and oxygenation in tissue. Changes in light-coupling due to movement of the subject can cause movement artifacts (MAs) in the recorded signals. Several methods have been developed so far that facilitate the detection and reduction of MAs in the data. However, due to fixed parameter values (e.g., global threshold) none of these methods are perfectly suitable for long-term (i.e., hours) recordings or were not time-effective when applied to large datasets. We aimed to overcome these limitations by automation, i.e., data adaptive thresholding specifically designed for long-term measurements, and by introducing a stable long-term signal reconstruction. Our new technique (“acceleration-based movement artifact reduction algorithm”, AMARA) is based on combining two methods: the “movement artifact reduction algorithm” (MARA, Scholkmann et al. Phys. Meas. 2010, 31, 649–662), and the “accelerometer-based motion artifact removal” (ABAMAR, Virtanen et al. J. Biomed. Opt. 2011, 16, 087005). We describe AMARA in detail and report about successful validation of the algorithm using empirical NIRS data, measured over the prefrontal cortex in adolescents during sleep. In addition, we compared the performance of AMARA to that of MARA and ABAMAR based on validation data.
Resumo:
IMPORTANCE Some experts suggest that serum thyrotropin levels in the upper part of the current reference range should be considered abnormal, an approach that would reclassify many individuals as having mild hypothyroidism. Health hazards associated with such thyrotropin levels are poorly documented, but conflicting evidence suggests that thyrotropin levels in the upper part of the reference range may be associated with an increased risk of coronary heart disease (CHD). OBJECTIVE To assess the association between differences in thyroid function within the reference range and CHD risk. DESIGN, SETTING, AND PARTICIPANTS Individual participant data analysis of 14 cohorts with baseline examinations between July 1972 and April 2002 and with median follow-up ranging from 3.3 to 20.0 years. Participants included 55,412 individuals with serum thyrotropin levels of 0.45 to 4.49 mIU/L and no previously known thyroid or cardiovascular disease at baseline. EXPOSURES Thyroid function as expressed by serum thyrotropin levels at baseline. MAIN OUTCOMES AND MEASURES Hazard ratios (HRs) of CHD mortality and CHD events according to thyrotropin levels after adjustment for age, sex, and smoking status. RESULTS Among 55,412 individuals, 1813 people (3.3%) died of CHD during 643,183 person-years of follow-up. In 10 cohorts with information on both nonfatal and fatal CHD events, 4666 of 48,875 individuals (9.5%) experienced a first-time CHD event during 533,408 person-years of follow-up. For each 1-mIU/L higher thyrotropin level, the HR was 0.97 (95% CI, 0.90-1.04) for CHD mortality and 1.00 (95% CI, 0.97-1.03) for a first-time CHD event. Similarly, in analyses by categories of thyrotropin, the HRs of CHD mortality (0.94 [95% CI, 0.74-1.20]) and CHD events (0.97 [95% CI, 0.83-1.13]) were similar among participants with the highest (3.50-4.49 mIU/L) compared with the lowest (0.45-1.49 mIU/L) thyrotropin levels. Subgroup analyses by sex and age group yielded similar results. CONCLUSIONS AND RELEVANCE Thyrotropin levels within the reference range are not associated with risk of CHD events or CHD mortality. This finding suggests that differences in thyroid function within the population reference range do not influence the risk of CHD. Increased CHD risk does not appear to be a reason for lowering the upper thyrotropin reference limit.