81 resultados para Loading constraint
Resumo:
The aim of the study was to explore the sensitivity and robustness of T2 mapping in the detection and quantification of early degenerative cartilage changes at the patella.
Resumo:
In a majority of species, leaf development is thought to proceed in a bilaterally symmetric fashion without systematic asymmetries. This is despite the left and right sides of an initiating primordium occupying niches that differ in their distance from sinks and sources of auxin. Here, we revisit an existing model of auxin transport sufficient to recreate spiral phyllotactic patterns and find previously overlooked asymmetries between auxin distribution and the centers of leaf primordia. We show that it is the direction of the phyllotactic spiral that determines the side of the leaf these asymmetries fall on. We empirically confirm the presence of an asymmetric auxin response using a DR5 reporter and observe morphological asymmetries in young leaf primordia. Notably, these morphological asymmetries persist in mature leaves, and we observe left-right asymmetries in the superficially bilaterally symmetric leaves of tomato (Solanum lycopersicum) and Arabidopsis thaliana that are consistent with modeled predictions. We further demonstrate that auxin application to a single side of a leaf primordium is sufficient to recapitulate the asymmetries we observe. Our results provide a framework to study a previously overlooked developmental axis and provide insights into the developmental constraints imposed upon leaf morphology by auxin-dependent phyllotactic patterning.
Resumo:
STUDY OBJECTIVE: In healthy subjects, arousability to inspiratory resistive loading is greater during rapid eye movement (REM) sleep compared with non-REM (NREM) sleep but is poorest in REM sleep in patients with sleep apnea. We therefore examined the hypothesis that sleep fragmentation impairs arousability, especially from REM sleep. DESIGN: Two blocks of 3 polysomnographies (separated by at least 1 week) were performed randomly. An inspiratory-loaded night followed either 2 undisturbed control nights (LN(C)) or 2 acoustically fragmented nights (LN(F)) SETTING: Sleep laboratory. PARTICIPANTS: Sixteen healthy men aged 20 to 29 years. INTERVENTIONS: In both loaded nights, an inspiratory resistive load was added via a valved facemask every 2 minutes during sleep and turned off either when arousal occurred or after 2 minutes. MEASUREMENTS AND RESULTS: During LN(F), arousability remained significantly greater in REM sleep (71% aroused within 2 minutes) compared with stage 2 (29%) or stage 3/4 (16%) sleep. After sleep fragmentation, arousability was decreased in stage 2 sleep (LN(F): 29%; LN(C): 38%; p < .05) and low in early REM sleep, increasing across the night (p < .01). In stage 3/4 sleep, neither an attenuation nor a change across the night was seen after sleep fragmentation. CONCLUSIONS: Mild sleep fragmentation is already sufficient to attenuate arousability in stage 2 sleep and to decrease arousability in early, compared with late, REM sleep. This means that sleep fragmentation affects the arousal response to increasing resistance and that the effects are different in stage 2 and REM sleep. The biologic reason for this increase in the arousal response in REM sleep across the night is not clear.
Resumo:
It is generally agreed that the mechanical environment of intervertebral disc cells plays an important role in maintaining a balanced matrix metabolism. The precise mechanism by which the signals are transduced into the cells is poorly understood. Osmotic changes in the extracellular matrix (ECM) are thought to be involved. Current in-vitro studies on this topic are mostly short-term and show conflicting data on the reaction of disc cells subjected to osmotic changes which is partially due to the heterogenous and often substantially-reduced culture systems. The aim of the study was therefore to investigate the effects of cyclic osmotic loading for 4 weeks on metabolism and matrix gene expression in a full-organ intervertebral disc culture system. Intervertebral disc/endplate units were isolated from New Zealand White Rabbits and cultured either in iso-osmotic media (335 mosmol/kg) or were diurnally exposed for 8 hours to hyper-osmotic conditions (485 mosmol/kg). Cell viability, metabolic activity, matrix composition and matrix gene expression profile (collagen types I/II and aggrecan) were monitored using Live/Dead cell viability assay, tetrazolium reduction test (WST 8), proteoglycan and DNA quantification assays and quantitative PCR. The results show that diurnal osmotic stimulation did not have significant effects on proteoglycan content, cellularity and disc cell viability after 28 days in culture. However, hyperosmolarity caused increased cell death in the early culture phase and counteracted up-regulation of type I collagen gene expression in nucleus and annulus cells. Moreover, the initially decreased cellular dehydrogenase activity recovered with osmotic stimulation after 4 weeks and aggrecan gene down-regulation was delayed, although the latter was not significant according to our statistical criteria. In contrast, collagen type II did not respond to the osmotic changes and was down-regulated in both groups. In conclusion, diurnal hyper-osmotic stimulation of a whole-organ disc/endplate culture partially inhibits a matrix gene expression profile as encountered in degenerative disc disease and counteracts cellular metabolic hypo-activity.
Resumo:
BACKGROUND: A single high loading dose of 25 mg/kg caffeine has been shown to be effective for the prevention of apnoea, but may result in considerable reductions in blood flow velocity (BFV) in cerebral and intestinal arteries. OBJECTIVE: To assess the effects of two loading doses of 12.5 mg/kg caffeine given four hours apart on BFV in cerebral and intestinal arteries, left ventricular output (LVO), and plasma caffeine concentrations in preterm infants. DESIGN: Sixteen preterm neonates of <34 weeks gestation were investigated one hour after the first oral dose and one, two, and 20 hours after the second dose by Doppler sonography. RESULTS: The mean (SD) plasma caffeine concentrations were 31 (7) and 29 (7) mg/l at two and 20 hours respectively after the second dose. One hour after the first dose, none of the circulatory variables had changed significantly. One hour after the second caffeine dose, mean BFV in the internal carotid artery and anterior cerebral artery showed significant reductions of 17% and 19% (p = 0.01 and p = 0.003 respectively). BFV in the coeliac artery and superior mesenteric artery, LVO, PCO2, and respiratory rate had not changed significantly. Total vascular resistance, calculated as the ratio of mean blood pressure to LVO, had increased significantly one and two hours after the second dose (p = 0.049 and p = 0.023 respectively). CONCLUSION: A divided high loading dose of 25 mg/kg caffeine given four hours apart had decreased BFV in cerebral arteries after the second dose, whereas BFV in intestinal arteries and LVO were not affected.