28 resultados para Life history. MARK. Population parameters. Neotropical birds
Resumo:
Background: Reconstructing the evolutionary history of a species is challenging. It often depends not only on the past biogeographic and climatic events but also the contemporary and ecological factors, such as current connectivity and habitat heterogeneity. In fact, these factors might interact with each other and shape the current species distribution. However, to what extent the current population genetic structure reflects the past and the contemporary factors is largely unknown. Here we investigated spatio-temporal genetic structures of Nile tilapia (Oreochromis niloticus) populations, across their natural distribution in Africa. While its large biogeographic distribution can cause genetic differentiation at the paleo-biogeographic scales, its restricted dispersal capacity might induce a strong genetic structure at micro-geographic scales. Results: Using nine microsatellite loci and 350 samples from ten natural populations, we found the highest genetic differentiation among the three ichthyofaunal provinces and regions (Ethiopian, Nilotic and Sudano-Sahelian) (R(ST) = 0.38 - 0.69). This result suggests the predominant effect of paleo-geographic events at macro-geographic scale. In addition, intermediate divergences were found between rivers and lakes within the regions, presumably reflecting relatively recent interruptions of gene flow between hydrographic basins (R(ST) = 0.24 - 0.32). The lowest differentiations were observed among connected populations within a basin (R(ST) = 0.015 in the Volta basin). Comparison of temporal sample series revealed subtle changes in the gene pools in a few generations (F = 0 - 0.053). The estimated effective population sizes were 23 - 143 and the estimated migration rate was moderate (m similar to 0.094 - 0.097) in the Volta populations. Conclusions: This study revealed clear hierarchical patterns of the population genetic structuring of O. niloticus in Africa. The effects of paleo-geographic and climatic events were predominant at macro-geographic scale, and the significant effect of geographic connectivity was detected at micro-geographic scale. The estimated effective population size, the moderate level of dispersal and the rapid temporal change in genetic composition might reflect a potential effect of life history strategy on population dynamics. This hypothesis deserves further investigation. The dynamic pattern revealed at micro-geographic and temporal scales appears important from a genetic resource management as well as from a biodiversity conservation point of view.
Resumo:
The interface between climate and ecosystem structure and function is incompletely understood, partly because few ecological records start before the recent warming phase. Here, we analyse an exceptional 100-yr long record of the great tit (Parus major) population in Switzerland in relation to climate and habitat phenology. Using structural equation analysis, we demonstrate an uninterrupted cascade of significant influences of the large-scale atmospheric circulation (North-Atlantic Oscillation, NAO, and North-sea – Caspian Pattern, NCP) on habitat and breeding phenology, and further on fitness-relevant life history traits within great tit populations. We then apply the relationships of this analysis to reconstruct the circulation-driven component of fluctuations in great tit breeding phenology and productivity on the basis of new seasonal NAO and NCP indices back to 1500 AD. According to the structural equation model, the multi-decadal oscillation of the atmospheric circulation likely led to substantial variation in habitat phenology, productivity and consequently, tit population fluctuations with minima during the "Maunder Minimum" (∼ 1650–1720) and the Little Ice Age Type Event I (1810–1850). The warming since 1975 was not only related with a quick shift towards earlier breeding, but also with the highest productivity since 1500, and thus, the impact of the NAO and NCP has contributed to an unprecedented increase of the population. A verification of the structural equation model against two independent data series (1970–2000 and 1750–1900) corroborates that the retrospective model reliably depicts the major long-term NAO/NCP impact on ecosystem parameters. The results suggest a complex cascade of climate effects beginning at a global scale and ending at the level of individual life histories. This sheds light on how large-scale climate conditions substantially affect major life history parameters within a population, and thus influence key ecosystem parameters at the scale of centuries.
Resumo:
The genetic structure and demography of local populations is tightly linked to the rate and scale of dispersal. Dispersal parameters are notoriously difficult to determine in the field, and remain often completely unknown for smaller organisms. In this study, we investigate spatial and temporal genetic structure in relation to dispersal patterns among local populations of the probably most abundant European mammals, the common vole (Microtus arvalis). Voles were studied in six natural populations at distances of 0.4-2.5 km in three different seasons (fall, spring, summer) corresponding to different life-history stages. Field observations provided no direct evidence for movements of individuals between populations. The analysis of 10 microsatellite markers revealed a persistent overall genetic structure among populations of 2.9%, 2.5% and 3% FST in the respective season. Pairwise comparisons showed that even the closest populations were significantly differentiated from each other in each season, but there was no evidence for temporal differentiation within populations or isolation by distance among populations. Despite significant genetic structure, assignment analyses identified a relatively high proportion of individuals as being immigrants for the population where they were captured. The immigration rate was not significantly lower for females than for males. We suggest that a generally low and sex-dependent effective dispersal rate as the consequence of only few immigrants reproducing successfully in the new populations together with the social structure within populations may explain the maintenance of genetic differentiation among populations despite migration.
Resumo:
Aims The effect Of anthropogenic landscape fragmentation on the genetic diversity and adaptive potential of plant populations is a major issue in conservation biology. However, little is known about the partitioning of genetic diversity in alpine species, which occur in naturally fragmented habitats. Here, we, investigate molecular patterns of three alpine plants (Epilobium fleischeri, Geum reptans and Campanula thyrsoides) across Switzerland and ask whether Spatial isolation has led to high levels of populations differentiation, increasing over distance, and a decrease of within-population variability. We further hypothesize that file contrasting potential for long-distance dispersal (LDD) of Seed in these Species will considerably influence and explain diversity partitioning. Methods For each study species, we Sampled 20-23 individuals from each of 20-32 populations across entire Switzerland. We applied Random Amplified Polymorphic Dimorphism markers to assess genetic diversity within (Nei's expected heterozygosity, H-e; percentage of polymorphic hands, P-P) and among (analysis of molecular variance, Phi(st)) populations and correlated population size and altitude with within-populalion diversity. Spatial patterns of genetic relatedness were investigated using Mantel tests and standardized major axis regression as well as unweighted pair group method with arithmetic mean cluster analyses and Monmonier's algorithm. To avoid known biases, We standardized the numbers of populations, individuals and markers using multiple random reductions. We modelled LDD with a high alpine wind data set using the terminal velocity and height of seed release as key parameters. Additionally, we assessed a number of important life-history traits and factors that potentially influence genetic diversity partitioning (e.g. breeding system, longevity and population size). Important findings For all three species, We found a significant isolation-by-distance relationship but only a moderately high differentiation among populations (Phi(st): 22.7, 48 and 16.8%, for E. fleischeri, G. reptans and C. thyrsoides, respectively). Within-population diversity (H-c: 0.19-0.21, P-p: 62-75%) was not reduced in comparison to known results from lowland species and even small populations with < 50 reproductive individuals contained high levels of genetic diversity. We further found no indication that a high long-distance seed dispersal potential enhances genetic connectivity among populations. Gene flow seems to have a strong stochastic component causing large dissimilarity between population pairs irrespective of the spatial distance. Our results suggest that other life-history traits, especially the breeding System, may play an important role in genetic diversity partitioning. We conclude that spatial isolation in the alpine environment has a strong influence on population relatedness but that a number of factors can considerably influence the strength of this relationship.
Resumo:
Several prominent hypotheses have been posed to explain the immense variability among plant species in defense against herbivores. A major concept in the evolutionary ecology of plant defenses is that tradeoffs of defense strategies are likely to generate and maintain species diversity. In particular, tradeoffs between constitutive and induced resistance and tradeoffs relating these strategies to growth and competitive ability have been predicted. We performed three independent experiments on 58 plant species from 15 different plant families to address these hypotheses in a phylogenetic framework. Because evolutionary tradeoffs may be altered by human-imposed artificial selection, we used 18 wild plant species and 40 cultivated garden-plant species. Across all 58 plant species, we demonstrate a tradeoff between constitutive and induced resistance, which was robust to accounting for phylogenetic history of the species. Moreover, the tradeoff was driven by wild species and was not evident for cultivated species. In addition, we demonstrate that more competitive species—but not fast growing ones—had lower constitutive but higher induced resistance. Thus, our multispecies experiments indicate that the competition–defense tradeoff holds for constitutive resistance and is complemented by a positive relationship of competitive ability with induced resistance. We conclude that the studied genetically determined tradeoffs are indeed likely to play an important role in shaping the high diversity observed among plant species in resistance against herbivores and in life history traits.
Resumo:
1.Pollinating insects provide crucial and economically important ecosystem services to crops and wild plants, but pollinators, particularly bees, are globally declining as a result of various driving factors, including the prevalent use of pesticides for crop protection. Sublethal pesticide exposure negatively impacts numerous pollinator life-history traits, but its influence on reproductive success remains largely unknown. Such information is pivotal, however, to our understanding of the long-term effects on population dynamics. 2.We investigated the influence of field-realistic trace residues of the routinely used neonicotinoid insecticides thiamethoxam and clothianidin in nectar substitutes on the entire life-time fitness performance of the red mason bee Osmia bicornis. 3.We show that chronic, dietary neonicotinoid exposure has severe detrimental effects on solitary bee reproductive output. Neonicotinoids did not affect adult bee mortality; however, monitoring of fully controlled experimental populations revealed that sublethal exposure resulted in almost 50% reduced total offspring production and a significantly male-biased offspring sex ratio. 4.Our data add to the accumulating evidence indicating that sublethal neonicotinoid effects on non-Apis pollinators are expressed most strongly in a rather complex, fitness-related context. Consequently, to fully mitigate long-term impacts on pollinator population dynamics, present pesticide risk assessments need to be expanded to include whole life-cycle fitness estimates, as demonstrated in the present study using O. bicornis as a model.
Resumo:
In this paper we address the issue of who is most likely to participate in further training, for what reasons and at what stage of the life course. Special emphasis is given to the impact of labour-market policies to encourage further education and a person's individual or cohort possibilities to participate in further education. We apply a Cox proportional hazard model to data from the West German Life History Study, separately for women and men, within and outside the firm. Younger cohorts show not only higher proportions of participation in further education and training at early stages of the life course, they also continue to participate in higher numbers during later stages of the life course. General labour-force participation reduces and tenure with the same firm increases the propensity to participate in further education and training. Contrary to expectations, in Germany labour-market segmentation has been enhanced rather than reduced by further education and training policies, since in the firm-specific labour-market segment, i.e. skilled jobs in large firms, and in the public sector both women and men had a higher probability of participation. Particularly favourable conditions for participation in further education outside the firm prevailed during the first years of the labour promotion act (Arbeitsförderungsgesetz) between 1969 and 1974, but women did not benefit to the same extent as men. Training policies are, therefore, in need of continuous assessment based on a goal-achievement evaluation to avoid any unintended effects of such policies.
Resumo:
Resource heterogeneity may influence how plants are attacked and respond to consumers in multiple ways. Perhaps a better understanding of how this interaction might limit sapling recruitment in tree populations may be achieved by examining species’ functional responses to herbivores on a continuum of resource availability. Here, we experimentally reduced herbivore pressure on newly established seedlings of two dominant masting trees in 40 canopy gaps, across c. 80 ha of tropical rain forest in central Africa (Korup, Cameroon). Mesh cages were built to protect individual seedlings, and their leaf production and changes in height were followed for 22 months. With more light, herbivores increasingly prevented the less shade-tolerant Microberlinia bisulcata from growing as tall as it could and producing more leaves, indicating an undercompensation. The more shade-tolerant Tetraberlinia bifoliolata was much less affected by herbivores, showing instead near to full compensation for leaf numbers, and a negligible to weak impact of herbivores on its height growth. A stage-matrix model that compared control and caged populations lent evidence for a stronger impact of herbivores on the long-term population dynamics of M. bisulcata than T. bifoliolata. Our results suggest that insect herbivores can contribute to the local coexistence of two abundant tree species at Korup by disproportionately suppressing sapling recruitment of the faster-growing dominant via undercompensation across the light gradient created by canopy disturbances. The functional patterns we have documented here are consistent with current theory, and, because gap formations are integral to forest regeneration, they may be more widely applicable in other tropical forest communities. If so, the interaction between life-history and herbivore impact across light gradients may play a substantial role in tree species coexistence.
Resumo:
Existing evidence of plant phenological change to temperature increase demonstrates that the phenological responsiveness is greater at warmer locations and in early-season plant species. Explanations of these findings are scarce and not settled. Some studies suggest considering phenology as one functional trait within a plant's life history strategy. In this study, we adapt an existing phenological model to derive a generalized sensitivity in space (SpaceSens) model for calculating temperature sensitivity of spring plant phenophases across species and locations. The SpaceSens model have three parameters, including the temperature at the onset date of phenophases (Tp), base temperature threshold (Tb) and the length of period (L) used to calculate the mean temperature when performing regression analysis between phenology and temperature. A case study on first leaf date of 20 plant species from eastern China shows that the change of Tp and Tb among different species accounts for interspecific difference in temperature sensitivity. Moreover, lower Tp at lower latitude is the main reason why spring phenological responsiveness is greater there. These results suggest that spring phenophases of more responsive, early-season plants (especially in low latitude) will probably continue to diverge from the other late-season plants with temperatures warming in the future.
Resumo:
White markings and spotting patterns in animal species are thought to be a result of the domestication process. They often serve for the identification of individuals but sometimes are accompanied by complex pathological syndromes. In the Swiss Franches-Montagnes horse population, white markings increased vastly in size and occurrence during the past 30 years, although the breeding goal demands a horse with as little depigmented areas as possible. In order to improve selection and avoid more excessive depigmentation on the population level, we estimated population parameters and breeding values for white head and anterior and posterior leg markings. Heritabilities and genetic correlations for the traits were high (h(2) > 0.5). A strong positive correlation was found between the chestnut allele at the melanocortin-1-receptor gene locus and the extent of white markings. Segregation analysis revealed that our data fit best to a model including a polygenic effect and a biallelic locus with a dominant-recessive mode of inheritance. The recessive allele was found to be the white trait-increasing allele. Multilocus linkage disequilibrium analysis allowed the mapping of the putative major locus to a chromosomal region on ECA3q harboring the KIT gene.