24 resultados para Li_8SiN_4-Li_3N-BN
Resumo:
The identification of 15N-labeled 3-nitrotyrosine (NTyr) by gas chromatography/mass spectroscopy in protein hydrolyzates from activated RAW 264.7 macrophages incubated with 15N-L-arginine confirms that nitric oxide synthase (NOS) is involved in the nitration of protein-bound tyrosine (Tyr). An assay is presented for NTyr that employs HPLC with tandem electrochemical and UV detection. The assay involves enzymatic hydrolysis of protein, acetylation, solvent extraction, O-deacetylation, and dithionite reduction to produce an analyte containing N-acetyl-3-aminotyrosine, an electrochemically active derivative of NTyr. We estimate the level of protein-bound NTyr in normal rat plasma to be approximately 0-1 residues per 10(6) Tyr with a detection limit of 0.5 per 10(7) Tyr when > 100 nmol of Tyr is analyzed and when precautions are taken to limit nitration artifacts. Zymosan-treated RAW 264.7 cells were shown to have an approximately 6-fold higher level of protein-bound NTyr compared with control cells and cells treated with N(G)-monomethyl-L-arginine, an inhibitor of NOS. Intraperitoneal injection of F344 rats with zymosan led to a marked elevation in protein-bound NTyr to approximately 13 residues per 10(6) Tyr, an approximately 40-fold elevation compared with plasma protein of untreated rats; cotreatment with N(G)-monomethyl-L-arginine inhibited the formation of NTyr in plasma protein from blood and peritoneal exudate by 69% and 53%, respectively. This assay offers a highly sensitive and quantitative approach for investigating the role of reactive byproducts of nitric oxide in the many pathological conditions and disease states associated with NO(X) exposure such as inflammation and smoking.
Resumo:
BACKGROUND: Bulimia nervosa (BN) has been associated with dysregulation of the central catecholaminergic system. An instructive way to investigate the relationship between catecholaminergic function and psychiatric disorder has involved behavioral responses to experimental catecholamine depletion (CD). The purpose of this study was to examine a possible catecholaminergic dysfunction in the pathogenesis of bulimia nervosa. METHODS: CD was achieved by oral administration of alpha-methyl-para-tyrosine (AMPT) in 18 remitted female subjects with BN (rBN) and 31 healthy female control subjects. The study design consisted of a randomized, double blind, placebo-controlled crossover, single-site experimental trial. The main outcome measures were bulimic symptoms assessed by the Eating Disorder Examination-Questionnaire. Measures were assessed before and 26, 30, 54, 78, 102 hours after the first AMPT or placebo administration. RESULTS: In the experimental environment (controlled environment with a low level of food cues) rBN subjects had a greater increase in eating disorder symptoms during CD compared with healthy control subjects (condition × diagnosis interaction, p < .05). In the experimental environment, rBN subjects experienced fewer bulimic symptoms than in the natural environment (uncontrolled environment concerning food cues) 36 hours after the first AMPT intake (environment × diagnosis interaction, p < .05). Serum prolactin levels increased significantly, and to a comparable degree across groups, after AMPT administration. CONCLUSIONS: This study suggests that rBN is associated with vulnerability for developing eating disorder symptoms in response to reduced catecholamine neurotransmission after CD. The findings support the notion of catecholaminergic dysfunction as a possible trait abnormality in BN.
Resumo:
Phytochemical investigation of a dichloromethane-methanol (1:1) extract of the fruit pericarp of Omphalocarpum procerum which exhibited antiplasmodial activity during preliminary screening led to the isolation of the new fatty ester triterpenoid 3β-hexadecanoyloxy-28-hydroxyolean-12-en-11-one (1), together with five known compounds 2-6. The structure of the new compound as well as those of the known compounds was established by means of spectroscopic methods and by comparison with previously reported data. Compounds 1- 4 were evaluated in-vitro for their cytotoxicity against L6 cell lines and antiprotozoal activities against Plasmodium falciparum, Leishmania donovani, Trypanosoma brucei rhodesiense and Trypanosoma cruzi (species responsible for human malaria, visceral leishmaniasis, African trypanosomiasis and Chagas disease, respectively). The tested compounds showed weak to moderate antiprotozoal activity and, no significant effect was detected regarding their cytotoxic potency.
Resumo:
Background: A relationship between bulimia nervosa (BN) and reward-related behavior is supported by several lines of evidence. The dopaminergic dysfunctions in the processing of reward-related stimuli have been shown to be modulated by the neurotrophin brain derived neurotrophic factor (BDNF) and the hormone leptin. Methods: Using a randomized, double-blind, placebo-controlled, crossover design, a reward learning task was applied to study the behavior of 20 female subjects with remitted BN (rBN) and 27 female healthy controls under placebo and catecholamine depletion with alpha-methyl-para-tyrosine (AMPT). The plasma levels of BDNF and leptin were measured twice during the placebo and the AMPT condition, immediately before and 1 h after a standardized breakfast. Results: AMPT-induced differences in plasma BDNF levels were positively correlated with the AMPT-induced differences in reward learning in the whole sample (p = 0.05). Across conditions, plasma BDNF levels were higher in rBN subjects compared to controls (diagnosis effect; p = 0.001). Plasma BDNF and leptin levels were higher in the morning before compared to after a standardized breakfast across groups and conditions (time effect; p < 0.0001). The plasma leptin levels were higher under catecholamine depletion compared to placebo in the whole sample (treatment effect; p = 0.0004). Conclusions: This study reports on preliminary findings that suggest a catecholamine-dependent association of plasma BDNF and reward learning in subjects with rBN and controls. A role of leptin in reward learning is not supported by this study. However, leptin levels were sensitive to a depletion of catecholamine stores in both rBN and controls.
Resumo:
The excitonic S1/S2 state splitting and the localization/delocalization of the S1 and S2 electronic states are investigated in the benzonitrile dimer (BN)2 and its 13C and d5 isotopomers by mass-resolved two-color resonant two-photon ionization spectroscopy in a supersonic jet, complemented by calculations. The doubly hydrogen-bonded (BN-h5)2 and (BN-d5)2 dimers are C2h symmetric with equivalent BN moieties. Only the S0 → S2 electronic origin is observed, while the S0 → S1 excitonic component is electric-dipole forbidden. A single 12C/13C or 5-fold h5/d5 isotopic substitution reduce the dimer symmetry to Cs, so that the heteroisotopic dimers (BN)2-(h5 – h513C), (BN)2-(h5 – d5), and (BN)2-(h5 – h513C) exhibit both S0 → S1 and S0 → S2 origins. Isotope-dependent contributions Δiso to the excitonic splittings arise from the changes of the BN monomer zero-point vibrational energies; these range from Δiso(12C/13C) = 3.3 cm–1 to Δiso(h5/d5) = 155.6 cm–1. The analysis of the experimental S1/S2 splittings of six different isotopomeric dimers yields the S1/S2 exciton splitting Δexc = 2.1 ± 0.1 cm–1. Since Δiso(h5/d5) ≫ Δexc and Δiso(12C/13C) > Δexc, complete and near-complete exciton localization occurs upon 12C/13C and h5/d5 substitutions, respectively, as diagnosed by the relative S0 → S1 and S0 → S2 origin band intensities. The S1/S2 electronic energy gap of (BN)2 calculated by the spin-component scaled approximate second-order coupled-cluster (SCS-CC2) method is Δelcalc = 10 cm–1. This electronic splitting is reduced by the vibronic quenching factor Γ. The vibronically quenched exciton splitting Δelcalc·Γ = Δvibroncalc = 2.13 cm–1 is in excellent agreement with the observed splitting Δexc = 2.1 cm–1. The excitonic splittings can be converted to semiclassical exciton hopping times; the shortest hopping time is 8 ps for the homodimer (BN-h5)2, the longest is 600 ps for the (BN)2(h5 – d5) heterodimer.
Resumo:
UNLABELLED Gastrin-releasing peptide receptors (GRPrs) are overexpressed on a variety of human cancers, providing the opportunity for peptide receptor targeting via radiolabeled bombesin-based peptides. As part of our ongoing investigations into the development of improved GRPr antagonists, this study aimed at verifying whether and how N-terminal modulations improve the affinity and pharmacokinetics of radiolabeled GRPr antagonists. METHODS The potent GRPr antagonist MJ9, Pip-d-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH(2) (Pip, 4-amino-1-carboxymethyl-piperidine), was conjugated to 1,4,7-triazacyclononane, 1-glutaric acid-4,7 acetic acid (NODAGA), and 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) and radiolabeled with (68)Ga and (64)Cu. The GRPr affinity of the corresponding metalloconjugates was determined using (125)I-Tyr(4)-BN as a radioligand. The labeling efficiency of (68)Ga(3+) was compared between NODAGA-MJ9 and NOTA-MJ9 in acetate buffer, at room temperature and at 95°C. The (68)Ga and (64)Cu conjugates were further evaluated in vivo in PC3 tumor xenografts by biodistribution and PET imaging studies. RESULTS The half maximum inhibitory concentrations of all the metalloconjugates are in the high picomolar-low nanomolar range, and these are the most affine-radiolabeled GRPr antagonists we have studied so far in our laboratory. NODAGA-MJ9 incorporates (68)Ga(3+) nearly quantitatively (>98%) at room temperature within 10 min and at much lower peptide concentrations (1.4 × 10(-6) M) than NOTA-MJ9, for which the labeling yield was approximately 45% under the same conditions and increased to 75% at 95°C for 5 min. Biodistribution studies showed high and specific tumor uptake, with a maximum of 23.3 ± 2.0 percentage injected activity per gram of tissue (%IA/g) for (68)Ga-NOTA-MJ9 and 16.7 ± 2.0 %IA/g for (68)Ga-NODAGA-MJ9 at 1 h after injection. The acquisition of PET images with the (64)Cu-MJ9 conjugates at later time points clearly showed the efficient clearance of the accumulated activity from the background already at 4 h after injection, whereas tumor uptake still remained high. The high pancreas uptake for all radiotracers at 1 h after injection was rapidly washed out, resulting in an increased tumor-to-pancreas ratio at later time points. CONCLUSION We have developed 2 GRPr antagonistic radioligands, which are improved in terms of binding affinity and overall biodistribution profile. Their promising in vivo pharmacokinetic performance may contribute to the improvement of the diagnostic imaging of tumors overexpressing GRPr.
Resumo:
In extracts of senescent leaves of the tobacco plant Nicotiana rustica, two colorless compounds with UV/VIS characteristics of nonfluorescent chlorophyll catabolites (NCCs) were detected and tentatively identified as Nr-NCCs. These two polar NCCs were found in similar amounts in the fresh extracts, and their constitutions could be determined by spectroscopic analysis. The data showed both of the two Nr-NCCs to have the same tetrapyrrolic core structure, as reported previously for all other NCCs from senescent higher plants. In the less polar catabolite, named Nr-NCC-2, this core structure was conjugated with a glucopyranose unit, as similarly discovered earlier in Bn-NCC-2, an NCC from oilseed rape (Brassica napus). The more polar NCC from tobacco leaves, Nr-NCC-1, carried an additional malonyl substituent at the 6′-OH group of the glucopyranosyl moiety. Partial (enzyme-catalyzed) hydrolysis of Nr-NCC-1 gave Nr-NCC-2, while enzyme-catalyzed malonylation of Nr-NCC-2 gave Nr-NCC-1, establishing the identity of their basic tetrapyrrole structure. In earlier work (on the polar NCCs from oilseed rape), only separate glucopyranosyl and malonyl functionalities were detected. Nr-NCC-1, thus, represents a further variant of the structures of NCCs from senescent higher plants and exhibits an unprecedented peripheral refunctionalization in chlorophyll catabolites.