64 resultados para Ldl-cholesterol


Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Though guidelines emphasize low-density lipoprotein cholesterol (LDL-C) lowering as an essential strategy for cardiovascular risk reduction, achieving target levels may be difficult. PATIENTS AND METHODS: The authors conducted a prospective, controlled, open-label trial examining the effectiveness and safety of high-dose fluvastatin or a standard dosage of simvastatin plus ezetimibe, both with an intensive guideline-oriented cardiac rehabilitation program, in achieving the new ATP III LDL-C targets in patients with proven coronary artery disease. 305 consecutive patients were enrolled in the study. Patients were divided into two groups: the simvastatin (40 mg/d) plus ezetimibe (10 mg/d) and the fluvastatin-only group (80 mg/d). Patients in both study groups received the treatment for 21 days in addition to nonpharmacological measures, including advanced physical, dietary, psychosocial, and educational activities. RESULTS: After 21 days of treatment, a significant reduction in LDL-C was found in both study groups as compared to the initial values, however, the reduction in LDL-C was significantly stronger in the simvastatin plus ezetimibe group: simvastatin plus ezetimibe treatment decreased LDL-C to a mean level of 57.7 +/- 1.7 mg/ml, while fluvastatin achieved a reduction to 84.1 +/- 2.4 mg/ml (p < 0.001). In the simvastatin plus ezetimibe group, 95% of the patients reached the target level of LDL-C < 100 mg/dl. This percentage was significantly higher than in patients treated with fluvastatin alone (75%; p < 0.001). The greater effectiveness of simvastatin plus ezetimibe was more impressive when considering the optional goal of LDL-C < 70 mg/dl (75% vs. 32%, respectively; p < 0.001). There was no difference in occurrence of adverse events between both groups. CONCLUSION: Simvastatin 40 mg/d plus ezetimibe 10 mg/d, on the background of a guideline-oriented standardized intensive cardiac rehabilitation program, can reach 95% effectiveness in achieving challenging goals (LDL < 100 mg/dl) using lipid-lowering medication in patients at high cardiovascular risk.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oxidized low-density lipoprotein (oxLDL) induced-apoptosis of vascular cells may participate in plaque instability and rupture. We have previously shown that vascular smooth muscle cells (VSMC) stably expressing caveolin-1 were more susceptible to oxLDL-induced apoptosis than VSMC expressing lower level of caveolin-1, and this was correlated with enhanced Ca(2+) entry and pro-apoptotic events. In this study we aimed to identify the molecular events involved in oxLDL-induced Ca(2+) influx and their regulation by the structural protein caveolin-1. In VSMC, transient receptor potential canonical-1 (TRPC1) silencing by ARN interference, prevents the Ca(2+) influx and reduces the toxicity induced by oxLDL. Moreover, caveolin-1 silencing induces concomitant decrease of TRPC1 expression and reduces oxLDL-induced-apoptosis of VSMC. OxLDL enhanced the cell surface expression of TRPC1, as shown by biotinylation of cell surface proteins, and induced TRPC1 translocation into caveolar compartment, as assessed by subcellular fractionation. OxLDL-induced TRPC1 translocation was dependent on actin cytoskeleton and associated with a dramatic rise of 7-ketocholesterol (a major oxysterol in oxLDL) into caveolar membranes, whereas the caveolar content of cholesterol was unchanged. Altogether, the reported results show that TRPC1 channels play a role in Ca(2+) influx and Ca(2+) homeostasis deregulation that mediate apoptosis induced by oxLDL. These data also shed new light on the role of caveolin-1 and caveolar compartment as important regulators of TRPC1 trafficking to the plasma membrane and apoptotic processes that play a major role in atherosclerosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The achievement rate of recommended low-density lipoprotein cholesterol (LDL-C) targets of < 1.8 mmol/l for secondary prevention in very high risk patients is difficult. Observational studies reported that loss of function mutation of the PCS9 was associated with LDL-C decrease level and reduction of cardiovascular events. Monoclonal antibodies to PCSK9 (REGN727 and AMG 145, PSCK9 inhibitors) have been tested in clinical studies of phase I and II and showed LDL-C level reduction of 60-70% compared to placebo. This approach appears safe and well-tolerated. The PCSK9 inhibitors are now tested in large phase III clinical studies to assess the long-term safety and efficacy of this new promising approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fetal serum cholesterol and lipoprotein concentrations differ between preterm and term born neonates. An imbalance of the flow of cholesterol from the sites of synthesis or efflux from cells of peripheral organs to the liver, the reverse cholesterol transport (RCT), is linked to atherosclerosis and cardiovascular disease (CVD). Preterm delivery is a risk factor for the development of CVD. Thus, we hypothesized that RCT is affected by a diminished cholesterol acceptor capacity in preterm as compared to term fetuses. Cholesterol efflux assays were performed in RAW264.7, HepG2, and HUVEC cell lines. In the presence and absence of ABC transporter overexpression by TO-901317, umbilical cord sera of preterm and term born neonates (n = 28 in both groups) were added. Lipid components including high density lipoprotein (HDL), low density lipoprotein (LDL), apolipoprotein A1, and apolipoprotein E were measured and related to fractional cholesterol efflux values. We found overall, fractional cholesterol efflux to remain constant between the study groups, and over gestational ages at delivery, respectively. However, correlation analysis revealed cholesterol efflux values to be predominantly related to HDL concentration at term, while in preterm neonates, cholesterol efflux was mainly associated with LDL In conclusion cholesterol acceptor capacity during fetal development is kept in a steady state with different mechanisms and lipid fractions involved at distinct stages during the second half of fetal development. However, RCT mechanisms in preterm neonates seem not to be involved in the development of CVD later in life suggesting rather changes in the lipoprotein pattern causative.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND 2013 AHA/ACC guidelines on the treatment of cholesterol advised to tailor high-intensity statin after ACS, while previous ATP-III recommended titration of statin to reach low-density lipoprotein cholesterol (LDL-C) targets. We simulated the impact of this change of paradigm on the achievement of recommended targets. METHODS Among a prospective cohort study of consecutive patients hospitalized for ACS from 2009 to 2012 at four Swiss university hospitals, we analyzed 1602 patients who survived one year after recruitment. Targets based on the previous guidelines approach was defined as (1) achievement of LDL-C target < 1.8 mmol/l, (2) reduction of LDL-C ≥ 50% or (3) intensification of statin in patients who did not reach LDL-C targets. Targets based on the 2013 AHA/ACC guidelines approach was defined as the maximization of statin therapy at high-intensity in patients aged ≤75 years and moderate- or high-intensity statin in patients >75 years. RESULTS 1578 (99%) patients were prescribed statin at discharge, with 1120 (70%) at high-intensity. 1507 patients (94%) reported taking statin at one year, with 909 (57%) at high-intensity. Among 482 patients discharged with sub-maximal statin, intensification of statin was only observed in 109 patients (23%). 773 (47%) patients reached the previous LDL-C targets, while 1014 (63%) reached the 2013 AHA/ACC guidelines targetsone year after ACS (p value < 0.001). CONCLUSION The application of the new 2013 AHA/ACC guidelines criteria would substantially increase the proportion of patients achieving recommended lipid targets one year after ACS. Clinical trial number, NCT01075868.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The response of cholesterol metabolism to a negative energy balance (NEB) induced by feed restriction for 3 weeks starting at 100 days in milk (DIM) compared to the physiologically occurring NEB in week 1 postpartum (p.p.) was investigated in 50 dairy cows (25 control (CON) and 25 feed-restricted (RES)). Blood samples, liver biopsies and milk samples were taken in week 1 p.p., and in weeks 0 and 3 of feed restriction. Plasma concentrations of total cholesterol (C), phospholipids (PL), triglycerides (TAG), very low density lipoprotein-cholesterol (VLDL-C) and low density lipoprotein-cholesterol (LDL-C) increased in RES cows from week 0 to 3 during feed restriction and were higher in week 3 compared to CON cows. In contrast, during the physiologically occurring NEB in week 1 p.p., C, PL, TAG and lipoprotein concentrations were at a minimum. Plasma phospholipid transfer protein (PLTP) and lecithin:cholesterol acyltransferase (LCAT) activities did not differ between week 0 and 3 for both groups, whereas during NEB in week 1 p.p. PLTP activity was increased and LCAT activity was decreased. Milk C concentration was not affected by feed restriction in both groups, whereas milk C mass was decreased in week 3 for RES cows. In comparison, C concentration and mass in milk were elevated in week 1 p.p. Hepatic mRNA abundance of sterol regulatory element-binding factor-2 (SREBF-2), 3-hydroxy-3-methylglutaryl-coenzyme A synthase 1 (HMGCS1), 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR), and ATP-binding cassette transporter (ABCA1) were similar in CON and RES cows during feed restriction, but were upregulated during NEB in week 1 p.p. compared to the non-lactating stage without a NEB. In conclusion, cholesterol metabolism in dairy cows is affected by nutrient and energy deficiency depending on the stage of lactation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the last months, the number of reports on Holstein calves suffering from incurable idiopathic diarrhea dramatically increased. Affected calves showed severe hypocholesterolemia and mostly died within days up to a few months after birth. This new autosomal monogenic recessive inherited fat metabolism disorder, termed cholesterol deficiency (CD), is caused by a loss of function mutation of the bovine gene. The objective of the present study was to investigate specific components of lipid metabolism in 6 homozygous for the mutation (CDS) and 6 normal Holstein calves with different genotypes. Independent of sex, CDS had significantly lower plasma concentrations of total cholesterol (TC), free cholesterol (FC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), very-low-density lipoprotein cholesterol (VLDL-C), triacylglycerides (TAG), and phospholipids (PL) compared with homozygous wild-type calves ( < 0.05). Furthermore, we studied the effect of the genotype on cholesterol metabolism in adult Holstein breeding bulls of Swissgenetics. Among a total of 254 adult males, the homozygous mutant genotype was absent, 36 bulls were heterozygous carriers (CDC), and 218 bulls were homozygous wild-type (CDF). In CDC bulls, plasma concentrations of TC, FC, HDL-C, LDL-C, VLDL-C, TAG, and PL were lower compared with CDF bulls ( < 0.05). The ratios of FC:cholesteryl esters (CE) and FC:TC were higher in CDC bulls compared with CDF bulls, whereas the ratio of CE:TC was lower in CDC bulls compared with CDF bulls ( < 0.01). In conclusion, the CD-associated mutation was shown to affect lipid metabolism in affected Holstein calves and adult breeding bulls. Besides cholesterol, the concentrations of PL, TAG, and lipoproteins also were distinctly reduced in homozygous and heterozygous carriers of the mutation. Beyond malabsorption of dietary lipids, deleterious effects of apolipoprotein B deficiency on hepatic lipid metabolism, steroid biosynthesis, and cell membrane function can be expected, which may result in unspecific symptoms of reduced fertility, growth, and health.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Members of the ATP-binding cassette (ABC) transporters play a pivotal role in cellular lipid efflux. To identify candidate cholesterol transporters implicated in lipid homeostasis and mammary gland (MG) physiology, we compared expression and localization of ABCA1, ABCG1, and ABCA7 and their regulatory genes in mammary tissues of different species during the pregnancy-lactation cycle. Murine and bovine mammary glands (MGs) were investigated during different functional stages. The abundance of mRNAs was determined by quantitative RT-PCR. Furthermore, transporter proteins were localized in murine, bovine, and human MGs by immunohistochemistry. In the murine MG, ABCA1 mRNA abundance was elevated during nonlactating compared with lactating stages, whereas ABCA7 and ABCA1 mRNA profiles were not altered. In the bovine MG, ABCA1, ABCG1, and ABCA7 mRNAs abundances were increased during nonlactating stages compared with lactation. Furthermore, associations between mRNA levels of transporters and their regulatory genes LXRalpha, PPARgamma, and SREBPs were found. ABCA1, ABCG1, and ABCA7 proteins were localized in glandular MG epithelial cells (MEC) during lactation, whereas during nonlactating stages, depending on species, the proteins showed distinct localization patterns in MEC and adipocytes. Our results demonstrate that ABCA1, ABCG1, and ABCA7 are differentially expressed between lactation and nonlactating stages and in association with regulatory genes. Combined expression and localization data suggest that the selected cholesterol transporters are universal MG transporters involved in transport and storage of cholesterol and in lipid homeostasis of MEC. Because of the species-specific expression patterns of transporters in mammary tissue, mechanisms of cholesterol homeostasis seem to be differentially regulated between species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lipids are important for cell function and survival, but abnormal concentrations may lead to various diseases. Cholesterol homeostasis is greatly dependent on the active transport by membrane proteins, whose activities coordinate lipid status with cellular function. Intestinal Niemann-Pick C1-Like 1 protein (NPC1L1) and scavenger receptor B1 (SR-B1) participate in the uptake of extracellular cholesterol, whereas ATP binding cassette A1 (ABCA1) mediates the efflux of excessive intracellular cholesterol. Caveolin-1 binds cholesterol and fatty acids (FA) and participates in cholesterol trafficking. Sterol response element binding protein-2 (SREBP-2) is a sensor that regulates intracellular cholesterol synthesis. Given that cholesterol is a constituent of chylomicrons, whose synthesis is enhanced with an increased FA supply, we tested the hypothesis that feeding polyunsaturated FA (PUFA)-enriched diets in treatment of canine chronic enteropathies alters the mRNA expression of genes involved in cholesterol homeostasis. Using quantitative reverse transcriptase polymerase chain reaction (RT-PCR), we compared the mRNA abundance of NPC1L1, SR-B1, ABCA1, caveolin-1, and SREBP-2 in duodenal mucosal biopsies of dogs with food-responsive diarrhea (FRD; n=14) and inflammatory bowel disease (IBD; n=7) before and after treatment with cholesterol-free PUFA-enriched diets and in healthy controls (n=14). The abundance of caveolin-1, ABCA1, and SREBP-2 were altered by PUFA-enriched diets (P<0.05), whereas that of NPC1L1 and SR-B1 mRNA remained unchanged. The gene expression of caveolin-1, ABCA1, and SREBP-2 was down-regulated (P<0.05) by PUFA-enriched diets in IBD dogs only. Our results suggest that feeding PUFA-enriched diets may alter cholesterol homeostasis in duodenal mucosal cells of dogs suffering from IBD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ATP-binding cassette (ABC) transporters ABCA1 and ABCG1 play an important role in cellular cholesterol homeostasis, but their function in mammary gland (MG) tissue remains elusive. A bovine MG model that allows repeated MG sampling in identical animals at different functional stages was used to test whether 1) ABCA1 and ABCG1 protein expression and subcellular localization in mammary epithelial cells (MEC) change during the pregnancy-lactation cycle, and 2) these 2 proteins were present in milk fat globules (MFG). Expression and localization in MEC were investigated in bovine MG tissues at the end of lactation, during the dry period (DP), and early lactation using immunohistochemical and immunofluorescence approaches. The presence of ABCA1 and ABCG1 in MFG isolated from fresh milk was determined by immunofluorescence. The ABCA1 protein expression in MEC, expressed as arbitrary units, was higher during the end of lactation (12.2±0.24) and the DP (12.5±0.22) as compared with during early lactation (10.2±0.65). In contrast, no significant change in ABCG1 expression existed between the stages. Throughout the cycle, ABCA1 and ABCG1 were detected in the apical (41.9±24.8 and 49.0±4.96% of cows, respectively), basal (56.2±28.1 and 54.6±7.78% of cows, respectively), or entire cytoplasm (56.8±13.4 and 61.6±14.4% of cows, respectively) of MEC, or showed combined localization. Unlike ABCG1, ABCA1 was absent at the apical aspect of MEC during early lactation. Immunolabeling experiments revealed the presence of ABCA1 and ABCG1 in MFG membranes. Findings suggest a differential, functional stage-dependent role of ABCA1 and ABCG1 in cholesterol homeostasis of the MG epithelium. The presence of ABCA1 and ABCG1 in MFG membranes suggests that these proteins are involved in cholesterol exchange between MEC and alveolar milk.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Long-term dietary weight loss results in complex metabolic changes. However, its effect on cholesterol metabolism in obese subjects is still unclear.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE:To determine whether low low-density lipoprotein cholesterol (LDL-C) but not high-density lipoprotein cholesterol (HDL-C) and triglyceride concentrations are associated with worse outcome in a large cohort of ischemic stroke patients treated with IV thrombolysis. METHODS:Observational multicenter post hoc analysis of prospectively collected data in stroke thrombolysis registries. Because of collinearity between total cholesterol (TC) and LDL-C, we used 2 different models with TC (model 1) and with LDL-C (model 2). RESULTS:Of the 2,485 consecutive patients, 1,847 (74%) had detailed lipid profiles available. Independent predictors of 3-month mortality were lower serum HDL-C (adjusted odds ratio [(adj)OR] 0.531, 95% confidence interval [CI] 0.321-0.877 in model 1; (adj)OR 0.570, 95% CI 0.348-0.933 in model 2), lower serum triglyceride levels ((adj)OR 0.549, 95% CI 0.341-0.883 in model 1; (adj)OR 0.560, 95% CI 0.353-0.888 in model 2), symptomatic ICH, and increasing NIH Stroke Scale score, age, C-reactive protein, and serum creatinine. TC, LDL-C, HDL-C, and triglycerides were not independently associated with symptomatic ICH. Increased HDL-C was associated with an excellent outcome (modified Rankin Scale score 0-1) in model 1 ((adj)OR 1.390, 95% CI 1.040-1.860). CONCLUSION:Lower HDL-C and triglycerides were independently associated with mortality. These findings were not due to an association of lipid concentrations with symptomatic ICH and may reflect differences in baseline comorbidities, nutritional state, or a protective effect of triglycerides and HDL-C on mortality following acute ischemic stroke.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background PCSK9 (Proprotein Convertase Subtilisin Kexin type 9) is a circulating protein that promotes hypercholesterolemia by decreasing hepatic LDL receptor protein. Under non interventional conditions, its expression is driven by sterol response element binding protein 2 (SREBP2) and follows a diurnal rhythm synchronous with cholesterol synthesis. Plasma PCSK9 is associated to LDL-C and to a lesser extent plasma triglycerides and insulin resistance. We aimed to verify the effect on plasma PCSK9 concentrations of dietary interventions that affect these parameters. Methods We performed nutritional interventions in young healthy male volunteers and offspring of type 2 diabetic (OffT2D) patients that are more prone to develop insulin resistance, including: i) acute post-prandial hyperlipidemic challenge (n=10), ii) 4 days of high-fat (HF) or high-fat/high-protein (HFHP) (n=10), iii) 7 (HFruc1, n=16) or 6 (HFruc2, n=9) days of hypercaloric high-fructose diets. An acute oral fat load was also performed in two patients bearing the R104C-V114A loss-of-function (LOF) PCSK9 mutation. Plasma PCSK9 concentrations were measured by ELISA. For the HFruc1 study, intrahepatocellular (IHCL) and intramyocellular lipids were measured by 1H magnetic resonance spectroscopy. Hepatic and whole-body insulin sensitivity was assessed with a two-step hyperinsulinemic-euglycemic clamp (0.3 and 1.0 mU.kg-1.min-1). Findings HF and HFHP short-term diets, as well as an acute hyperlipidemic oral load, did not significantly change PCSK9 concentrations. In addition, post-prandial plasma triglyceride excursion was not altered in two carriers of PCSK9 LOF mutation compared with non carriers. In contrast, hypercaloric 7-day HFruc1 diet increased plasma PCSK9 concentrations by 28% (p=0.05) in healthy volunteers and by 34% (p=0.001) in OffT2D patients. In another independent study, 6-day HFruc2 diet increased plasma PCSK9 levels by 93% (p<0.0001) in young healthy male volunteers. Spearman’s correlations revealed that plasma PCSK9 concentrations upon 7-day HFruc1 diet were positively associated with plasma triglycerides (r=0.54, p=0.01) and IHCL (r=0.56, p=0.001), and inversely correlated with hepatic (r=0.54, p=0.014) and whole-body (r=−0.59, p=0.0065) insulin sensitivity. Conclusions Plasma PCSK9 concentrations vary minimally in response to a short term high-fat diet and they are not accompanied with changes in cholesterolemia upon high-fructose diet. Short-term high-fructose intake increased plasma PCSK9 levels, independent on cholesterol synthesis, suggesting a regulation independent of SREBP-2. Upon this diet, PCSK9 is associated with insulin resistance, hepatic steatosis and plasma triglycerides.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hormone sensitive lipase (HSL) regulates the hydrolysis of acylglycerols and cholesteryl esters (CE) in various cells and organs, including enterocytes of the small intestine. The physiological role of this enzyme in enterocytes, however, stayed elusive. In the present study we generated mice lacking HSL exclusively in the small intestine (HSLiKO) to investigate the impact of HSL deficiency on intestinal lipid metabolism and the consequences on whole body lipid homeostasis. Chow diet-fed HSLiKO mice showed unchanged plasma lipid concentrations. In addition, feeding with high fat/high cholesterol (HF/HC) diet led to unaltered triglyceride but increased plasma cholesterol concentrations and CE accumulation in the small intestine. The same effect was observed after an acute cholesterol load. Gavaging of radioactively labeled cholesterol resulted in increased abundance of radioactivity in plasma, liver and small intestine of HSLiKO mice 4h post-gavaging. However, cholesterol absorption determined by the fecal dual-isotope ratio method revealed no significant difference, suggesting that HSLiKO mice take up the same amount of cholesterol but in an accelerated manner. mRNA expression levels of genes involved in intestinal cholesterol transport and esterification were unchanged but we observed downregulation of HMG-CoA reductase and synthase and consequently less intestinal cholesterol biosynthesis. Taken together our study demonstrates that the lack of intestinal HSL leads to CE accumulation in the small intestine, accelerated cholesterol absorption and decreased cholesterol biosynthesis, indicating that HSL plays an important role in intestinal cholesterol homeostasis.