45 resultados para Lawn Hill Platform
A systemic biomass management analysis of small-scale farmers in the hill-zone of western Tajikistan
Resumo:
We developed an object-oriented cross-platform program to perform three-dimensional (3D) analysis of hip joint morphology using two-dimensional (2D) anteroposterior (AP) pelvic radiographs. Landmarks extracted from 2D AP pelvic radiographs and optionally an additional lateral pelvic X-ray were combined with a cone beam projection model to reconstruct 3D hip joints. Since individual pelvic orientation can vary considerably, a method for standardizing pelvic orientation was implemented to determine the absolute tilt/rotation. The evaluation of anatomically morphologic differences was achieved by reconstructing the projected acetabular rim and the measured hip parameters as if obtained in a standardized neutral orientation. The program had been successfully used to interactively objectify acetabular version in hips with femoro-acetabular impingement or developmental dysplasia. Hip(2)Norm is written in object-oriented programming language C++ using cross-platform software Qt (TrollTech, Oslo, Norway) for graphical user interface (GUI) and is transportable to any platform.
Resumo:
Nonallergic hypersensitivity and allergic reactions are part of the many different types of adverse drug reactions (ADRs). Databases exist for the collection of ADRs. Spontaneous reporting makes up the core data-generating system of pharmacovigilance, but there is a large under-estimation of allergy/hypersensitivity drug reactions. A specific database is therefore required for drug allergy and hypersensitivity using standard operating procedures (SOPs), as the diagnosis of drug allergy/hypersensitivity is difficult and current pharmacovigilance algorithms are insufficient. Although difficult, the diagnosis of drug allergy/hypersensitivity has been standardized by the European Network for Drug Allergy (ENDA) under the aegis of the European Academy of Allergology and Clinical Immunology and SOPs have been published. Based on ENDA and Global Allergy and Asthma European Network (GA(2)LEN, EU Framework Programme 6) SOPs, a Drug Allergy and Hypersensitivity Database (DAHD((R))) has been established under FileMaker((R)) Pro 9. It is already available online in many different languages and can be accessed using a personal login. GA(2)LEN is a European network of 27 partners (16 countries) and 59 collaborating centres (26 countries), which can coordinate and implement the DAHD across Europe. The GA(2)LEN-ENDA-DAHD platform interacting with a pharmacovigilance network appears to be of great interest for the reporting of allergy/hypersensitivity ADRs in conjunction with other pharmacovigilance instruments.
Resumo:
Type 1 diabetes mellitus is a chronic disease characterized by blood glucose levels out of normal range due to inability of insulin production. This dysfunction leads to many short- and long-term complications. In this paper, a system for tele-monitoring and tele-management of Type 1 diabetes patients is proposed, aiming at reducing the risk of diabetes complications and improving quality of life. The system integrates Wireless Personal Area Networks (WPAN), mobile infrastructure, and Internet technology along with commercially available and novel glucose measurement devices, advanced modeling techniques, and tools for the intelligent processing of the available diabetes patients information. The integration of the above technologies enables intensive monitoring of blood glucose levels, treatment optimisation, continuous medical care, and improvement of quality of life for Type 1 diabetes patients, without restrictions in everyday life activities.
Resumo:
Renewed interest in the measurement of cellular K(+) effluxes has been prompted by the observation that potassium plays an active and important role in numerous key cellular events, in particular cell necrosis and apoptosis. Although necrosis and apoptosis follow different pathways, both induce intracellular potassium effluxes. Here, we report the use of potassium-selective microelectrodes located in a microfluidic platform for cell culture to monitor and quantify such effluxes in real time. Using this platform, we observed and measured the early signs of cell lysis induced by a modification of the extracellular osmolarity. Furthermore, we were able to quantify the number of dying cells by evaluating the extracellular potassium concentration. A comparison between the potentiometric measurement with a fluorescent live-dead assay performed under similar conditions revealed the delay between potassium effluxes and cell necrosis. These results suggest that such platforms may be exploited for applications, such as cytotoxicological screening assays or tumor cell proliferation assays, by using extracellular K(+) as cell death marker.
Resumo:
We present the development of a multifunctional platform equipped with an array of silicon nitride micropipettes with dimensions allowing the implementation of extra- and intracellular operations. Micropipettes with outer diameter that ranges from 6 mum down to 300 nm and with walls thicknesses of 500 down to 150 nm are presented. The generic technology developed to fabricate these micropipettes has a number of advantages, including the ability to be implemented as ion-selective electrodes for (A) intracellular and (B) extracellular recordings and as (C) local drug microdispensers.
Resumo:
The concept of platform switching has been introduced to implant dentistry based on clinical observations of reduced peri-implant crestal bone loss. However, published data are controversial, and most studies are limited to 12 months. The aim of the present randomized clinical trial was to test the hypothesis that platform switching has a positive impact on crestal bone-level changes after 3 years. Two implants with a diameter of 4 mm were inserted crestally in the posterior mandible of 25 patients. The intraindividual allocation of platform switching (3.3-mm platform) and the standard implant (4-mm platform) was randomized. After 3 months of submerged healing, single-tooth crowns were cemented. Patients were followed up at short intervals for monitoring of healing and oral hygiene. Statistical analysis for the influence of time and platform type on bone levels employed the Brunner-Langer model. At 3 years, the mean radiographic peri-implant bone loss was 0.69 ± 0.43 mm (platform switching) and 0.74 ± 0.57 mm (standard platform). The mean intraindividual difference was 0.05 ± 0.58 mm (95% confidence interval: -0.19, 0.29). Crestal bone-level alteration depended on time (p < .001) but not on platform type (p = .363). The present randomized clinical trial could not confirm the hypothesis of a reduced peri-implant crestal bone loss, when implants had been restored according to the concept of platform switching.
Resumo:
In recent years, the formerly oligopolistic Enterprise Application Software (EAS) industry began to disintegrate into focal inter-firm networks with one huge, powerful, and multi-national plat-form vendor as the center, surrounded by hundreds or even thousands of small, niche players that act as complementors. From a theoretical point of view, these platform ecosystems may be governed by two organizing principles - trust and power. However, it is neither from a practical nor from a theoretical perspective clear, how trust and power relate to each other, i.e. whether they act as complements or substitutes. This study tries to elaborate our understanding of the relationship of trust and power by exploring their interplay using multi-dimensional conceptual-izations of trust and power, and by investigating potential dynamics in this interplay over the course of a partnership. Based on an exploratory multiple-case study of seven dyadic partner-ships between four platform vendors, and seven complementors, we find six different patterns of how trust and power interact over time. These patterns bear important implications for the suc-cessful management of partnerships between platform vendors and complementors, and clarify the theoretical debate surrounding the relationship of trust and power.
Resumo:
One of the current advances in functional biodiversity research is the move away from short-lived test systems towards the exploration of diversity-ecosystem functioning relationships in structurally more complex ecosystems. In forests, assumptions about the functional significance of tree species diversity have only recently produced a new generation of research on ecosystem processes and services. Novel experimental designs have now replaced traditional forestry trials, but these comparatively young experimental plots suffer from specific difficulties that are mainly related to the tree size and longevity. Tree species diversity experiments therefore need to be complemented with comparative observational studies in existing forests. Here we present the design and implementation of a new network of forest plots along tree species diversity gradients in six major European forest types: the FunDivEUROPE Exploratory Platform. Based on a review of the deficiencies of existing observational approaches and of unresolved research questions and hypotheses, we discuss the fundamental criteria that shaped the design of our platform. Key features include the extent of the species diversity gradient with mixtures up to five species, strict avoidance of a dilution gradient, special attention to community evenness and minimal covariation with other environmental factors. The new European research platform permits the most comprehensive assessment of tree species diversity effects on forest ecosystem functioning to date since it offers a common set of research plots to groups of researchers from very different disciplines and uses the same methodological approach in contrasting forest types along an extensive environmental gradient. (C) 2013 Elsevier GmbH. All rights reserved.
Resumo:
This study reports on a microfluidic platform on which single multicellular spheroids from malignant pleural mesothelioma (MPM), an aggressive tumor with poor prognosis, can be loaded, trapped and tested for chemotherapeutic drug response. A new method to detect the spheroid viability cultured on the microfluidic chip as a function of the drug concentration is presented. This approach is based on the evaluation of the caspase activity in the supernatant sampled from the chip and tested using a microplate reader. This simple and time-saving method does only require a minimum amount of manipulations and was established for very low numbers of cells. This feature is particularly important in view of personalised medicine applications for which the number of cells obtained from the patients is low. MPM spheroids were continuously perfused for 48 hours with cisplatin, one of the standard chemotherapeutic drugs used to treat MPM. The 50% growth inhibitory concentration of cisplatin in perfused MPM spheroids was found to be twice as high as in spheroids cultured under static conditions. This chemoresistance increase might be due to the continuous support of nutrients and oxygen to the perfused spheroids.
Resumo:
The use of biomarkers to infer drug response in patients is being actively pursued, yet significant challenges with this approach, including the complicated interconnection of pathways, have limited its application. Direct empirical testing of tumor sensitivity would arguably provide a more reliable predictive value, although it has garnered little attention largely due to the technical difficulties associated with this approach. We hypothesize that the application of recently developed microtechnologies, coupled to more complex 3-dimensional cell cultures, could provide a model to address some of these issues. As a proof of concept, we developed a microfluidic device where spheroids of the serous epithelial ovarian cancer cell line TOV112D are entrapped and assayed for their chemoresponse to carboplatin and paclitaxel, two therapeutic agents routinely used for the treatment of ovarian cancer. In order to index the chemoresponse, we analyzed the spatiotemporal evolution of the mortality fraction, as judged by vital dyes and confocal microscopy, within spheroids subjected to different drug concentrations and treatment durations inside the microfluidic device. To reflect microenvironment effects, we tested the effect of exogenous extracellular matrix and serum supplementation during spheroid formation on their chemotherapeutic response. Spheroids displayed augmented chemoresistance in comparison to monolayer culturing. This resistance was further increased by the simultaneous presence of both extracellular matrix and high serum concentration during spheroid formation. Following exposure to chemotherapeutics, cell death profiles were not uniform throughout the spheroid. The highest cell death fraction was found at the center of the spheroid and the lowest at the periphery. Collectively, the results demonstrate the validity of the approach, and provide the basis for further investigation of chemotherapeutic responses in ovarian cancer using microfluidics technology. In the future, such microdevices could provide the framework to assay drug sensitivity in a timeframe suitable for clinical decision making.