27 resultados para Land title system


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Both historical and idealized climate model experiments are performed with a variety of Earth system models of intermediate complexity (EMICs) as part of a community contribution to the Intergovernmental Panel on Climate Change Fifth Assessment Report. Historical simulations start at 850 CE and continue through to 2005. The standard simulations include changes in forcing from solar luminosity, Earth's orbital configuration, CO2, additional greenhouse gases, land use, and sulphate and volcanic aerosols. In spite of very different modelled pre-industrial global surface air temperatures, overall 20th century trends in surface air temperature and carbon uptake are reasonably well simulated when compared to observed trends. Land carbon fluxes show much more variation between models than ocean carbon fluxes, and recent land fluxes appear to be slightly underestimated. It is possible that recent modelled climate trends or climate–carbon feedbacks are overestimated resulting in too much land carbon loss or that carbon uptake due to CO2 and/or nitrogen fertilization is underestimated. Several one thousand year long, idealized, 2 × and 4 × CO2 experiments are used to quantify standard model characteristics, including transient and equilibrium climate sensitivities, and climate–carbon feedbacks. The values from EMICs generally fall within the range given by general circulation models. Seven additional historical simulations, each including a single specified forcing, are used to assess the contributions of different climate forcings to the overall climate and carbon cycle response. The response of surface air temperature is the linear sum of the individual forcings, while the carbon cycle response shows a non-linear interaction between land-use change and CO2 forcings for some models. Finally, the preindustrial portions of the last millennium simulations are used to assess historical model carbon-climate feedbacks. Given the specified forcing, there is a tendency for the EMICs to underestimate the drop in surface air temperature and CO2 between the Medieval Climate Anomaly and the Little Ice Age estimated from palaeoclimate reconstructions. This in turn could be a result of unforced variability within the climate system, uncertainty in the reconstructions of temperature and CO2, errors in the reconstructions of forcing used to drive the models, or the incomplete representation of certain processes within the models. Given the forcing datasets used in this study, the models calculate significant land-use emissions over the pre-industrial period. This implies that land-use emissions might need to be taken into account, when making estimates of climate–carbon feedbacks from palaeoclimate reconstructions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article synthesizes findings from a review of the state of research on sustainable land management in Kyrgyzstan and Tajikistan and from an analysis of the interface between research and action. Using the Global Land Project (GLP 2005) analytical framework, we analyzed the distribution of 131 selected publications (including a clearly defined set of local and international academic and gray literature) across the framework's components and links in a social–ecological system. There is a strong emphasis in the literature on the impact of changes in land use and management on ecosystems; however, there is little research on the implications for ecosystem services. This finding is opposed to that of a similar analysis of publications at the global scale (Björnsen Gurung et al 2012). Another major gap was the lack of research on Kyrgyzstan and Tajikistan regarding the influence of global factors on social and ecological systems, despite social, economic, and political integration into global structures since the collapse of the Soviet Union and the increasing influence of climate change. Our analysis disaggregated academic literature published in the region and international academic literature, revealing stark differences. These differences are partly attributable to the legacy of the late Soviet era principle of “rational use of land resources,” which fit the planned economy but lacks approaches for decentralized resource governance. Finally, the emphasis of research on systems knowledge, the lack of transdisciplinary research, and the critical feedback of stakeholders at a regional sustainable land management forum suggest that actionable sustainable land management research on Kyrgyzstan and Tajikistan is rare. Recommendations are made for targeted, application-focused, multistakeholder research and knowledge sharing, including local and international researchers as well as practitioners, policy-makers, and land users.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Our understanding of Earth's carbon climate system depends critically upon interactions between rising atmospheric CO2, changing land use, and nitrogen limitation on vegetation growth. Using a global land model, we show how these factors interact locally to generate the global land carbon sink over the past 200 years. Nitrogen constraints were alleviated by N2 fixation in the tropics and by atmospheric nitrogen deposition in extratropical regions. Nonlinear interactions between land use change and land carbon and nitrogen cycling originated from three major mechanisms: (i) a sink foregone that would have occurred without land use conversion; (ii) an accelerated response of secondary vegetation to CO2 and nitrogen, and (iii) a compounded clearance loss from deforestation. Over time, these nonlinear effects have become increasingly important and reduce the present-day net carbon sink by ~40% or 0.4 PgC yr−1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Land systems are increasingly influenced by distal connections: the externalities and unintended consequences of social and ecological processes which occur in distant locations, and the feedback mechanisms that lead to new institutional developments and governance arrangements. Economic globalization and urbanization accentuate these novel telecoupling relationships. The prevalence of telecoupling in land systems demands new approaches to research and analysis in land science. This chapter presents a working definition of a telecoupled system, emphasizing the role of governance and institutional change in telecoupled interactions. The social, institutional, and ecological processes and conditions through which telecoupling emerges are described. The analysis of these relationships in land science demands both integrative and diverse epistemological perspectives and methods. Such analyses require a focus on how the motivations and values of social actors relate to telecoupling processes, as well as on the mechanisms that produce unanticipated outcomes and feedback relationships among distal land systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Food security is important. A rising world population coupled with climate change creates growing pressure on global world food supplies. States alleviate this pressure domestically by attracting agri-foreign direct investment (agri-FDI). This is a high-risk strategy for weak states: the state may gain valuable foreign currency, technology and debt-free growth; but equally, investors may fail to deliver on their commitments and exploit weak domestic legal infrastructure to ‘grab’ large areas of prime agricultural land, leaving only marginal land for domestic production. A net loss to local food security and to the national economy results. This is problematic because the state must continue to guarantee its citizens’ right to food and property. Agri-FDI needs close regulation to maximise its benefit. This article maps the multilevel system of governance covering agri-FDI. We show how this system creates asymmetric rights in favour of the investor to the detriment of the host state’s food security and how these problems might be alleviated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The link between high precipitation in Dronning Maud Land (DML), Antarctica, and the large-scale atmospheric circulation is investigated using ERA-Interim data for 1979–2009. High-precipitation events are analyzed at Halvfarryggen situated in the coastal region of DML and at Kohnen Station located in its interior. This study further includes a comprehensive comparison of high precipitation in ERA-Interim with precipitation data from the Antarctic Mesoscale Prediction System (AMPS) and snow accumulation measurements from automatic weather stations (AWSs), with the limitations of such a comparison being discussed. The ERA-Interim and AMPS precipitation data agree very well. However, the correspondence between high precipitation in ERA-Interim and high snow accumulation at the AWSs is relatively weak. High-precipitation events at both Halvfarryggen and Kohnen are typically associated with amplified upper level waves. This large-scale atmospheric flow pattern is preceded by the downstream development of a Rossby wave train from the eastern South Pacific several days before the precipitation event. At the surface, a cyclone located over the Weddell Sea is the main synoptic ingredient for high precipitation both at Halvfarryggen and at Kohnen. A blocking anticyclone downstream is not a requirement for high precipitation per se, but a larger share of blocking occurrences during the highest-precipitation days in DML suggests that these blocks strengthen the vertically integrated water vapor transport (IVT) into DML. A strong link between high precipitation and the IVT perpendicular to the local orography suggests that IVT could be used as a “proxy” for high precipitation, in particular over DML's interior.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report on the EPICA Dronning Maud Land (East Antarctica) deep drilling operation. Starting with the scientific questions that led to the outline of the EPICA project, we introduce the setting of sister drillings at NorthGRIP and EPICA Dome C within the European ice-coring community. The progress of the drilling operation is described within the context of three parallel, deep-drilling operations, the problems that occurred and the solutions we developed. Modified procedures are described, such as the monitoring of penetration rate via cable weight rather than motor torque, and modifications to the system (e.g. closing the openings at the lower end of the outer barrel to reduce the risk of immersing the drill in highly concentrated chip suspension). Parameters of the drilling (e.g. core-break force, cutter pitch, chips balance, liquid level, core production rate and piece number) are discussed. We also review the operational mode, particularly in the context of achieved core length and piece length, which have to be optimized for drilling efficiency and core quality respectively. We conclude with recommendations addressing the design of the chip-collection openings and strictly limiting the cable-load drop with respect to the load at the start of the run.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A survey was conducted to generate holistic information on the production and utilization of local white lupin in two lupin growing districts, namely, Mecha and Sekela, representing mid and high altitude areas, respectively in North-western Ethiopia. During the survey, two types of participatory rural appraisal (PRA) techniques, namely, individual farmer interview (61 farmers from Mecha and 51 from Sekela) and group discussion (with 20 farmers from each district) were employed. There are significant differences (P<0.05) between the two study districts for the variables like total land holding, frequency of ploughing during lupin planting, days to maturity, lupin productivity, and number of days of soaking lupin in running water. However, there are no significant differences (P>0.05) between the two study districts for the variables like land allocated for lupin cultivation, lupin seed rate, lupin soaking at home, lupin consumption per family per week and proportion of lupin used for household consumption. The use of the crop as livestock feed is negligible due to its high alkaloid content. It is concluded that the local white lupin in Ethiopia is a valuable multipurpose crop which is being cultivated in the midst of very serious shortage of cropland. Its ability to maintain soil fertility and serve as a source of food in seasons of food scarcity makes it an important crop. However, its bitter taste due to its high alkaloid content remains to be a big challenge and any lupin improvement strategy has to focus on minimizing the alkaloid content of the crop.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The quantification of CO2 emissions from anthropogenic land use and land use change (eLUC) is essential to understand the drivers of the atmospheric CO2 increase and to inform climate change mitigation policy. Reported values in synthesis reports are commonly derived from different approaches (observation-driven bookkeeping and process-modelling) but recent work has emphasized that inconsistencies between methods may imply substantial differences in eLUC estimates. However, a consistent quantification is lacking and no concise modelling protocol for the separation of primary and secondary components of eLUC has been established. Here, we review differences of eLUC quantification methods and apply an Earth System Model (ESM) of Intermediate Complexity to quantify them. We find that the magnitude of effects due to merely conceptual differences between ESM and offline vegetation model-based quantifications is ~ 20 % for today. Under a future business-as-usual scenario, differences tend to increase further due to slowing land conversion rates and an increasing impact of altered environmental conditions on land-atmosphere fluxes. We establish how coupled Earth System Models may be applied to separate secondary component fluxes of eLUC arising from the replacement of potential C sinks/sources and the land use feedback and show that secondary fluxes derived from offline vegetation models are conceptually and quantitatively not identical to either, nor their sum. Therefore, we argue that synthesis studies should resort to the "least common denominator" of different methods, following the bookkeeping approach where only primary land use emissions are quantified under the assumption of constant environmental boundary conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soils are fundamental to ensuring water, energy and food security. Within the context of sus- tainable food production, it is important to share knowledge on existing and emerging tech- nologies that support land and soil monitoring. Technologies, such as remote sensing, mobile soil testing, and digital soil mapping, have the potential to identify degraded and non- /little-responsive soils, and may also provide a basis for programmes targeting the protection and rehabilitation of soils. In the absence of such information, crop production assessments are often not based on the spatio-temporal variability in soil characteristics. In addition, uncertain- ties in soil information systems are notable and build up when predictions are used for monitor- ing soil properties or biophysical modelling. Consequently, interpretations of model-based results have to be done cautiously. As such they provide a scientific, but not always manage- able, basis for farmers and/or policymakers. In general, the key incentives for stakeholders to aim for sustainable management of soils and more resilient food systems are complex at farm as well as higher levels. The same is true of drivers of soil degradation. The decision- making process aimed at sustainable soil management, be that at farm or higher level, also in- volves other goals and objectives valued by stakeholders, e.g. land governance, improved envi- ronmental quality, climate change adaptation and mitigation etc. In this dialogue session we will share ideas on recent developments in the discourse on soils, their functions and the role of soil and land information in enhancing food system resilience.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biophysical restoration or rehabilitation measures of land have demonstrated to be effective in many scientific projects and small-scale environmental experiments. However circumstances such as poverty, weak policies, or inefficient scientific knowledge transmission can hinder the effective upscaling of land restoration and the long term maintenance of proven sustainable use of soil and water. This may be especially worrisome in lands with harsh environmental conditions. This review covers recent efforts in landscape restoration and rehabilitation with a functional perspective aiming to simultaneously achieve ecosystem sustainability, economic efficiency, and social wellbeing. Water management and rehabilitation of ecosystem services in croplands, rangelands, forests, and coastlands are reviewed. The joint analysis of such diverse ecosystems provides a wide perspective to determine: (i) multifaceted impacts on biophysical and socio-economic factors; and (ii) elements influencing effective upscaling of sustainable land management practices. One conclusion can be highlighted: voluntary adoption is based on different pillars, i.e. external material and economic support, and spread of success information at the local scale to demonstrate the multidimensional benefits of sustainable land management. For the successful upscaling of land management, more attention must be paid to the social system from the first involvement stage, up to the long term maintenance.