32 resultados para Land plants
Resumo:
There is a lively debate on whether biodiversity conservation and agricultural production could be better reconciled by land sparing (strictly separating production fields and conservation areas) or by land sharing (combining both, agricultural production and biodiversity conservation on the same land). The debate originates from tropical countries, where agricultural land use continues to increase at the expense of natural ecosystems. But is it also relevant for Europe, where agriculture is withdrawing from marginal regions whilst farming of fertile lands continues to be intensified? Based on recent research on farmland biodiversity we conclude that the land sharing – land sparing dichotomy is too simplistic for Europe. Instead we differentiate between productive and marginal farmland. On productive farmland, semi-natural habitats are required to yield ecosystem services relevant for agriculture, to promote endangered farmland species which society wants to conserve even in intensively farmed regions, and to allow migration of non-farmland species through the agricultural matrix. On marginal farmland, high-nature value farming is a traditional way of land sharing, yielding high quality agricultural products and conserving specialized species. To conserve highly disturbance-sensitive species, there is a need for nature reserves. In conclusion, land sparing is not a viable olution for Europe in both productive and marginal farmland but because of different reasons in each type of farmland.
Resumo:
Intensification of land use in semi-natural hay meadows has resulted in a decrease in species diversity. This is often thought to be caused by the reduced establishment of plant species due to high competition for light under conditions of increased productivity. Sowing experiments in grasslands have found reliable evidence that diversity can also be constrained by seed availability, implying that processes influencing the production and persistence of seeds may be important for the functioning of ecosystems. So far, the effects of land-use intensification on the seed rain and the persistence of seeds in the soil have been unclear. We selected six pairs of extensively managed (Festuco-Brometea) and intensively managed (Arrhenatheretalia) grassland with traditional late cutting regimes across Switzerland and covering an annual productivity gradient in the range 176-1211 gm(-2). In each grassland community, we estimated seed rain and seed bank using eight pooled seed-trap or topsoil samples of 89 cm(2) in each of six plots representing an area of c. 150 m(2). The seed traps were established in spring 2010 and collected simultaneously with soil cores after an exposure of c. three months. We applied the emergence method in a cold frame over eight months to estimate density of viable seeds. With community productivity reflecting land-use intensification, the density and species richness in the seed rain increased, while mean seed size diminished and the proportions of persistent seeds and of species with persistent seeds in the topsoil declined. Stronger limitation of seeds in extensively managed semi-natural grasslands can explain the fact that such grasslands are not always richer in species than more intensively managed ones. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Phylogenetic diversity (PD) has been successfully used as a complement to classical measures of biological diversity such as species richness or functional diversity. By considering the phylogenetic history of species, PD broadly summarizes the trait space within a community. This covers amongst others complex physiological or biochemical traits that are often not considered in estimates of functional diversity, but may be important for the understanding of community assembly and the relationship between diversity and ecosystem functions. In this study we analyzed the relationship between PD of plant communities and land-use intensification in 150 local grassland plots in three regions in Germany. Specifically we asked whether PD decreases with land-use intensification and if so, whether the relationship is robust across different regions. Overall, we found that species richness decreased along land-use gradients the results however differed for common and rare species assemblages. PD only weakly decreased with increasing land-use intensity. The strength of the relationship thereby varied among regions and PD metrics used. From our results we suggest that there is no general relationship between PD and land-use intensification probably due to lack of phylogenetic conservatism in land- use sensitive traits. Nevertheless, we suggest that depending on specific regional idiosyncrasies the consideration of PD as a complement to other measures of diversity can be useful.
Resumo:
Aims and Methods Disturbance is supposed to play an important role for biodiversity and ecosystem stability as described by the intermediate disturbance hypothesis (IDH), which predicts highest species richness at intermediate levels of disturbances. In this study, we tested the effects of artificial soil disturbances on diversity of annual and perennial vascular plants and bryophytes in a field experiment in 86 agricultural grasslands differing in land use in two regions of Germany. On each grassland, we implemented four treatments: three treatments differing in application time of soil disturbances and one control. One year after experimental disturbance, we recorded vegetation and measured biomass productivity and bare ground. We analysed the disturbance response taking effects of region and land-use-accompanied disturbance regimes into account.Important Findings Region and land-use type strongly determined plant species richness. Experimental disturbances had small positive effects on the species richness of annuals, but none on perennials or bryophytes. Bare ground was positively related to species richness of bryophytes. However, exceeding the creation of 12% bare ground further disturbance had a detrimental effect on bryophyte species richness, which corresponds to the IDH. As biomass productivity was unaffected by disturbance our results indicate that the disturbance effect on species richness of annuals was not due to decreased overall productivity, but rather due to short-term lowered inter- and intraspecific competition at the newly created microsites.Generally, our results highlight the importance of soil disturbances for species richness of annual plants and bryophytes in agricultural grasslands. However, most grasslands were disturbed naturally or by land-use practices and our additional experimental soil disturbances only had a small short-term effect. Overall, total plant diversity in grasslands seemed to be more limited by the availability of propagules rather than by suitable microsites for germination. Thus, nature conservation efforts to increase grassland diversity should focus on overcoming propagule limitation, for instance by additional sowing of seeds, while the creation of additional open patches by disturbance might only be appropriate where natural disturbances are scarce.
Resumo:
We present quantitative reconstructions of regional vegetation cover in north-western Europe, western Europe north of the Alps, and eastern Europe for five time windows in the Holocene around 6k, 3k, 0.5k, 0.2k, and 0.05k calendar years before present (bp)] at a 1 degrees x1 degrees spatial scale with the objective of producing vegetation descriptions suitable for climate modelling. The REVEALS model was applied on 636 pollen records from lakes and bogs to reconstruct the past cover of 25 plant taxa grouped into 10 plant-functional types and three land-cover types evergreen trees, summer-green (deciduous) trees, and open land]. The model corrects for some of the biases in pollen percentages by using pollen productivity estimates and fall speeds of pollen, and by applying simple but robust models of pollen dispersal and deposition. The emerging patterns of tree migration and deforestation between 6k bp and modern time in the REVEALS estimates agree with our general understanding of the vegetation history of Europe based on pollen percentages. However, the degree of anthropogenic deforestation (i.e. cover of cultivated and grazing land) at 3k, 0.5k, and 0.2k bp is significantly higher than deduced from pollen percentages. This is also the case at 6k in some parts of Europe, in particular Britain and Ireland. Furthermore, the relationship between summer-green and evergreen trees, and between individual tree taxa, differs significantly when expressed as pollen percentages or as REVEALS estimates of tree cover. For instance, when Pinus is dominant over Picea as pollen percentages, Picea is dominant over Pinus as REVEALS estimates. These differences play a major role in the reconstruction of European landscapes and for the study of land cover-climate interactions, biodiversity and human resources.
Resumo:
The protection and sustainable management of forest carbon stocks, particularly in the tropics, is a key factor in the mitigation of global change effects. However, our knowledge of how land use and elevation affect carbon stocks in tropical ecosystems is very limited. We compared aboveground biomass of trees, shrubs and herbs for eleven natural and human-influenced habitat types occurring over a wide elevation gradient (866–4550 m) at the world's highest solitary mountain, Mount Kilimanjaro. Thanks to the enormous elevation gradient, we covered important natural habitat types, e.g., savanna woodlands, montane rainforest and afro-alpine vegetation, as well as important land-use types such as maize fields, grasslands, traditional home gardens, coffee plantations and selectively logged forest. To assess tree and shrub biomass with pantropical allometric equations, we measured tree height, diameter at breast height and wood density and to assess herbaceous biomass, we sampled destructively. Among natural habitats, tree biomass was highest at intermediate elevation in the montane zone (340 Mg ha−1), shrub biomass declined linearly from 7 Mg ha−1 at 900 m to zero above 4000 m, and, inverse to tree biomass, herbaceous biomass was lower at mid-elevations (1 Mg ha−1) than in savannas (900 m, 3 Mg ha−1) or alpine vegetation (above 4000 m, 6 Mg ha−1). While the various land-use types dramatically decreased woody biomass at all elevations, though to various degrees, herbaceous biomass was typically increased. Our study highlights tropical montane forest biomass as important aboveground carbon stock and quantifies the extent of the strong aboveground biomass reductions by the major land-use types, common to East Africa. Further, it shows that elevation and land use differently affect different vegetation strata, and thus the matrix for other organisms.
Resumo:
Global change, especially land-use intensification, affects human well-being by impacting the deliv-ery of multiple ecosystem services (multifunctionality). However, whether biodiversity loss is amajor component of global change effects on multifunctionality in real-world ecosystems, as inexperimental ones, remains unclear. Therefore, we assessed biodiversity, functional compositionand 14 ecosystem services on 150 agricultural grasslands differing in land-use intensity. We alsointroduce five multifunctionality measures in which ecosystem services were weighted according torealistic land-use objectives. We found that indirect land-use effects, i.e. those mediated by biodi-versity loss and by changes to functional composition, were as strong as direct effects on average.Their strength varied with land-use objectives and regional context. Biodiversity loss explainedindirect effects in a region of intermediate productivity and was most damaging when land-useobjectives favoured supporting and cultural services. In contrast, functional composition shifts,towards fast-growing plant species, strongly increased provisioning services in more inherentlyunproductive grasslands.
Resumo:
Der diesjährige 10. Trockenrasen-Sonderteil von Tuexenia beginnt mit einem Bericht über die aktuellen Aktivitäten der European Dry Grassland Group (EDGG). Zunächst geben wir einen Überblick über die Entwicklung der Mitgliederzahl. Dann berichten wir vom letzten European Dry Grassland Meeting in Tula (Russland, 2014) und vom letzten European Dry Grassland Field Workshop in Navarra (Spanien, 2014) und informieren über künftige Veranstaltungen der EDGG. Anschließend erläutern wir die Publikationsaktivitäten der EDGG. Im zweiten Teil des Editorials geben wir eine Einführung zu den fünf Artikeln des diesjährigen Trockenrasen-Sonderteils. Zwei Artikel beschäftigen sich mit der Syntaxonomie von Trockenrasen in Ost- bzw. Südosteuropa: der eine präsentiert erstmalig eine Gesamtklassifikation der Trockenrasengesellschaften Serbiens und des Kosovo während der andere Originalaufnahmen sub-montaner Graslandgesellschaften aus den bislang kaum untersuchten ukrainischen Ostkarpaten analysiert. Zwei weitere Artikel behandeln Trockenrasen-Feuchtwiesen-Komplexe im ungarischen Tiefland: Der eine behandelt den Einfluss der Landnutzung auf die Phytodiversität von Steppen und Feuchtwiesen, der andere den Einfluss von Niederschlagsschwankungen in einem Zeitraum von drei Jahren auf die Ausbildung salzbeeinflusster Steppen-Feuchtwiesen-Komplexe. Der fünfte Artikel analysiert landnutzungsbedingte Veränderungen des Graslands des Tsentralen-Balkan-Nationalparks in Bulgarien über einen Zeitraum von 65 Jahren
Resumo:
Fluctuations in the Δ14C curve and subsequent gaps of archaeological findings at 800–650 and 400–100 BC in western and central Europe may indicate major climate-driven land-abandonment phases. To address this hypothesis radiocarbon-dated sediments from four lakes in Switzerland were studied palynologically. Pollen analysis indicates contemporaneous phases of forest clearances and of intensified land-use at 1450–1250 BC, 650–450 BC, 50 BC–100 AD and around 700 AD. These land-use expansions coincided with periods of warm climate as recorded by the Alpine dendroclimatic and Greenland oxygen isotope records. Our results suggest that harvest yields would have increased synchronously over wide areas of central and southern Europe during periods of warm and dry climate. Combined interpretation of palaeoecological and archaeological findings suggests that higher food production led to increased human populations. Positive long-term trends in pollen values of Cerealia and Plantago lanceolata indicate that technical innovations during the Bronze and Iron Age (e.g. metal ploughs, scythes, hay production, fertilising methods) gradually increased agricultural productivity. The successful adoption of yield-increasing advances cannot be explained by climatic determinism alone. Combined with archaeological evidence, our results suggest that despite considerable cycles of spatial and demographic reorganisation (repeated land abandonments and expansions, as well as large-scale migrations and population decreases), human societies were able to shift to lower subsistence levels without dramatic ruptures in material culture. However, our data imply that human societies were not able to compensate rapidly for harvest failures when climate deteriorated. Agriculture in marginal areas was abandoned, and spontaneous reforestations took place on abandoned land south and north of the Alps. Only when the climate changed again to drier and warmer conditions did a new wide-spread phase of forest clearances and field extensions occur, allowing the reoccupation of previously abandoned areas. Spatial distribution of cereal cultivation and growth requirements of Cerealia species suggest that increases in precipitation were far more decisive in driving crop failures over central and southern Europe than temperature decreases.
Resumo:
This paper presents a multiproxy high-resolution study of the past 2600 years for Seebergsee, a small Swiss lake with varved sediments at the present tree-line ecotone. The laminae were identified as varves by a numerical analysis of diatom counts in the thin-sections. The hypothesis of two diatom blooms per year was corroborated by the 210Pb and 137Cs chronology. A period of intensive pasturing during the ‘Little Ice Age’ between ad 1346 and ad 1595 is suggested by coprophilous fungal spores, as well as by pollen indicators of grazing, by the diatom-inferred total phosphorus, by geochemistry and by documentary data. The subsequent re-oligotrophication of the lake took about 88 years, as determined by the timelag between the decline of coprophile fungal spores and the restoration of pre-eutrophic nutrient conditions. According to previous studies of latewood densities from the same region, cold summers around ad 1600 limited the pasturing at this altitude. This demonstrated the socio-economic impact of a single climatic event. However, the variance partitioning between the effects of land use and climate, which was applied for the whole core, revealed that climate independent of land use and time explained only 1.32% of the diatom data, while land use independent of climate and time explained 15.7%. Clearly land use in‘ uenced the lake, but land use was not always driven by climate. Other factors beside climate, such as politics or the introduction of fertilizers in the seventeenth and eighteenth centuries also in‘ uenced the development of Alpine pasturing.
Resumo:
Little is known about the vegetation and fire history of Sardinia, and especially the long-term history of the thermo-Mediterranean belt that encompasses its entire coastal lowlands. A new sedimentary record from a coastal lake based on pollen, spores, macrofossils and microscopic charcoal analysis is used to reconstruct the vegetation and fire history in north-eastern Sardinia. During the mid-Holocene (c. 8,100–5,300 cal bp), the vegetation around Stagno di Sa Curcurica was characterised by dense Erica scoparia and E. arborea stands, which were favoured by high fire activity. Fire incidence declined and evergreen broadleaved forests of Quercus ilex expanded at the beginning of the late Holocene. We relate the observed vegetation and fire dynamics to climatic change, specifically moister and cooler summers and drier and milder winters after 5,300 cal bp. Agricultural activities occurred since the Neolithic and intensified after c. 7,000 cal bp. Around 2,750 cal bp, a further decline of fire incidence and Erica communities occurred, while Quercus ilex expanded and open-land communities became more abundant. This vegetation shift coincided with the historically documented beginning of Phoenician period, which was followed by Punic and Roman civilizations in Sardinia. The vegetational change at around 2,750 cal bp was possibly advantaged by a further shift to moister and cooler summers and drier and milder winters. Triggers for climate changes at 5,300 and 2,750 cal bp may have been gradual, orbitally-induced changes in summer and winter insolation, as well as centennial-scale atmospheric reorganizations. Open evergreen broadleaved forests persisted until the twentieth century, when they were partly substituted by widespread artificial pine plantations. Our results imply that highly flammable Erica vegetation, as reconstructed for the mid-Holocene, could re-emerge as a dominant vegetation type due to increasing drought and fire, as anticipated under global change conditions.
Resumo:
entral European grasslands vary widely in productivity and in mowing and grazing regimes. The resulting differences in competition and heterogeneity among grasslands might have direct effects on plants, but might also affect the growth and morphology of their offspring through maternal effects or adaptive evolution. To test for such transgenerational effects, we grew plants of the clonal herb Trifolium repens from seeds collected in 58 grassland sites differing in productivity and mowing and grazing intensities in different treatments: without competition, with homogeneous competition, and with heterogeneous competition. In the competition-free treatment, T. repens from more productive, less frequently mown, and less intensively grazed sites produced more vegetative offspring, but this was not the case in the other treatments. When grown among or in close proximity to competitors, T. repens plants did not show preferential growth towards open spaces (i.e., no horizontal foraging), but did show strong vertical foraging by petiole elongation. In the homogeneous competition treatment, petiole length increased with the productivity of the parental site, but this was not the case in the heterogeneous competition treatment. Moreover, petiole length increased with mowing frequency and grazing intensity of the parental site in all but the homogeneous competition treatment. In summary, although the expression of differences between plants from sites with different productivities and land-use intensities depended on the experimental treatment, our findings imply that there are transgenerational effects of land use on the morphology and performance of T. repens.
Resumo:
Human land use may detrimentally affect biodiversity, yet long-term stability of species communities is vital for maintaining ecosystem functioning. Community stability can be achieved by higher species diversity (portfolio effect), higher asynchrony across species (insurance hypothesis) and higher abundance of populations. However, the relative importance of these stabilizing pathways and whether they interact with land use in real-world ecosystems is unknown. We monitored inter-annual fluctuations of 2,671 plant, arthropod, bird and bat species in 300 sites from three regions. Arthropods show 2.0-fold and birds 3.7-fold higher community fluctuations in grasslands than in forests, suggesting a negative impact of forest conversion. Land-use intensity in forests has a negative net impact on stability of bats and in grasslands on birds. Our findings demonstrate that asynchrony across species—much more than species diversity alone—is the main driver of variation in stability across sites and requires more attention in sustainable management.
Resumo:
Schwarzsee is located in the western Swiss Alps, in a region that has been affected by numerous landslides during the Holocene, as evidenced by geological surveys. Lacustrine sediments were cored to a depth of 13 m. The vegetation history of the lake's catchment was reconstructed and investigated to identify possible impacts on slope stability. The pollen analyses record development of forest cover during the middle and late Holocene, and provide strong evidence for regional anthropogenic influence such as forest clearing and agricultural activity. Vegetation change is characterized by continuous landscape denudation that begins at ca. 4300 cal. yrs BP, with five distinct pulses of increased deforestation, at 3650, 2700, 1500, 900, and 450 cal. yrs BP. Each pulse can be attributed to increased human impact, recorded by the appearance or increase of specific anthropogenic indicator plant taxa. These periods of intensified deforestation also appear to be correlated with increased landslide activity in the lake's catchment and increased turbidite frequency in the sediment record. Therefore, this study gives new evidence for a strong influence of vegetation changes on slope stability during the middle and late Holocene in the western Swiss Alps, and may be used as a case study for anthropogenically induced landslide activity.