18 resultados para Lactose crystallisation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The 146Sm–142Nd system plays a central role in tracing the silicate differentiation of the Earth prior to 4.1 Ga. After this time, given its initial abundance, the 146Sm can be considered to be extinct. Upadhyay et al. (2009) reported unexpected negative 142Nd anomalies in 1.48 Ga rocks of the Khariar nepheline syenite complex (India) and inferred that an early enriched, low-Sm/Nd reservoir must have contributed to the mantle source rocks of the Khariar complex. As 146Sm had been effectively extinct for about 2.6 billion years before the crystallisation of the Khariar samples, this Nd signature should have remained isolated from the convective mantle for at least that long. It was thus suggested that the source rock of Khariar samples had been sequestered in the lithospheric root of the Indian craton. Using a different chemical separation method, and a different Thermal Ionization Mass Spectrometry (TIMS) analysis protocol, the present study attempted to replicate these negative 142Nd anomalies, but none were found. To determine which data set is correct, we investigated three possible sources of bias between them: imperfect cancellation of Faraday collector efficiencies during multidynamic TIMS analysis, rapid sample fractionation between the sequential measurement of 146Nd/144Nd and 142Nd/144Nd, and non-exponential law behaviour resulting from so-called “domain mixing.” Incomplete cancellation of collector efficiencies was found unlikely to cause resolvable biases at the estimated level of variation among collector efficiencies. Even in the case of highly variable efficiency and resolvable biases, there is no reason to suspect that they would reproducibly affect only four rocks out of 10 analysed by Upadhyay et al. (2009). Although domain mixing may explain apparent “reverse” fractionation trends observed in some TIMS analyses, it cannot be the cause of the apparent negative anomalies in the study of Upadhyay et al. (2009). It was determined that rapid mass fractionation during the course of a multidynamic TIMS analysis can bias all measured Nd ratios. After applying an approximate correction for this effect, only one rock from Upadhyay et al. (2009) retained an apparent negative 142Nd anomaly. This, in conjunction with our new, anomaly-free data set measured at fractionation rates too low to cause bias, leads to the conclusion that the anomalies reported by Upadhyay et al. (2009) are a subtle and reproducible analytical artefact. The absence of negative 142Nd anomalies in these rocks relaxes the need for a mechanism (other than crust formation) that can isolate a Nd reservoir from the convective mantle for billions of years.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Instruments for on-farm determination of colostrum quality such as refractometers and densimeters are increasingly used in dairy farms. The colour of colostrum is also supposed to reflect its quality. A paler or mature milk-like colour is associated with a lower colostrum value in terms of its general composition compared with a more yellowish and darker colour. The objective of this study was to investigate the relationships between colour measurement of colostrum using the CIELAB colour space (CIE L*=from white to black, a*=from red to green, b*=from yellow to blue, chroma value G=visual perceived colourfulness) and its composition. Dairy cow colostrum samples (n=117) obtained at 4·7±1·5 h after parturition were analysed for immunoglobulin G (IgG) by ELISA and for fat, protein and lactose by infrared spectroscopy. For colour measurements, a calibrated spectrophotometer was used. At a cut-off value of 50 mg IgG/ml, colour measurement had a sensitivity of 50·0%, a specificity of 49·5%, and a negative predictive value of 87·9%. Colostral IgG concentration was not correlated with the chroma value G, but with relative lightness L*. While milk fat content showed a relationship to the parameters L*, a*, b* and G from the colour measurement, milk protein content was not correlated with a*, but with L*, b*, and G. Lactose concentration in colostrum showed only a relationship with b* and G. In conclusion, parameters of the colour measurement showed clear relationships to colostral IgG, fat, protein and lactose concentration in dairy cows. Implementation of colour measuring devices in automatic milking systems and milking parlours might be a potential instrument to access colostrum quality as well as detecting abnormal milk.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Colostrum formation and lactogenesis in the mammary gland and the timing of parturition are regulated by endocrine signals. Changes in progesterone (P4) and prolactin (PRL) are considered key events that inhibit colostrum formation, trigger parturition, and signal the onset of lactation. The goal of our study was to determine if colostrum yield and composition and immunoglobulin transfer are affected by prepartum milking relative to the decrease in P4, peak of PRL, or occurrence of parturition. Twenty-three multiparous cows were randomly assigned to 1 of 2 groups: (1) control with first milking at 4h postcalving (CON, n=11), and (2) treatment group with first milking approximately 1d before calving and second milking at 4h after parturition (APM, n=12). Colostrum yields were recorded and proportional samples were analyzed for immunoglobulin G (IgG) concentration. Blood plasma samples for the analyses of P4 and PRL were collected 3 times daily at 8-h intervals for 4d prepartum and again taken at 4h after parturition. Total colostrum mass of APM cows was higher than that of CON cows. Immunoglobulin G concentration and protein content did not differ between antepartum milking in APM cows and postpartum milking in CON cows. Colostrum IgG concentration and protein content in APM cows at the postpartum milking were lower compared with the IgG concentration established at the prepartum (APM) and postpartum milkings of CON cows. Immunoglobulin G mass did not differ in first and second colostrum collection in APM cows but was lower compared with that of CON cows. The sum of IgG mass in APM cows (prepartum + postpartum collections) did not differ from that of CON cows. Lactose and fat in milk (concentration and mass) increased from first to second milking in APM cows. Total mass of lactose and fat in APM cows (prepartum + postpartum collections) was greater compared with that of CON cows. The finding that the time of milking relative to parturition, P4 decrease, and PRL peak slightly affected yield and quality of colostrum emphasizes the complex interactions of numerous endocrine and morphological changes occurring during colostrogenesis and lactogenesis in dairy cows. The considerably rapid transfer of immunoglobulins into colostrum of prepartum-milked cows within a few hours leads to the hypothesis that the transfer of IgG can be very fast and-contrary to earlier findings-persist at least until parturition.