24 resultados para Koji Mold


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report on a 43-year old patient with an acute T-Cell Leucemia, currently in Aplasia after Chemotherapy, showing five targetoid bluish skin lesions. Due to a three weeks history of septic symptoms he was under treatment with antibiotics and antifungals. Multiple septic foci were localized (N. caudatus, liver, kidneys, lung, spine and right psoas). Microbiology analyses of various blood cultures and of the aspirate of the psoas abscess showed initially negative results. Clinically the skin lesions were suspected to be of septic or thrombogenic origin. A 5 mm punch biopsy was performed and separated for microbiological diagnostic and conventional histology. Surprisingly large fungal agents in mostly intravascular distribution were seen histologically and identified as Lichtheimia corymbifera (syn. Absidia corymbifera) by PCR. Cultures remained negative. The patient died on the following day. Lichtheimia corymbifera is a fungus belonging to the family of mucormycosis. Aspergillosis and mucormycosis are the most common mold infections in patients with hematological malignancies, clinically often indistinguishable. However, the true incidence of mucormycosis is not known and probably underestimated because of difficulties in diagnosis. Mucormycosis typically causes acute, aggressive, and frequently angioinvasive infections presenting with solitary local skin necrosis. The fact that the pathogenic fungus was isolated from a very discrete skin lesion but was not detected in blood cultures, and only later in the PCR of the aspirate of the psoas abscess, makes this case exceptional.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding and controlling the structural anisotropies of injection-molded polymers is vital for designing products such as cantilever-based sensors. Such micro-cantilevers are considered as cost-effective alternatives to single-crystalline silicon-based sensors. In order to achieve similar sensing characteristics,structure and morphology have to be controlled by means of processing parameters including mold temperature and injection speed. Synchrotron radiation-based scanning small- (SAXS) and wide-angle x-ray scattering techniques were used to quantify crystallinity and anisotropy in polymer micro-cantilevers with micrometer resolution in real space. SAXS measurements confirmed the lamellar nature of the injection-molded semi-crystalline micro-cantilevers. The homogenous cantilever material exhibits a lamellar periodicity increasing with mold temperature but not with injection speed. We demonstrate that micro-cantilevers made of semi-crystalline polymers such as polyvinylidenefluoride, polyoxymethylene, and polypropylene show the expected strong degree of anisotropy along the injection direction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microinjection molding was employed to fabricate low-cost polymer cantilever arrays for sensor applications. Cantilevers with micrometer dimensions and aspect ratios as large as 10 were successfully manufactured from polymers, including polypropylene and polyvinylidenfluoride. The cantilevers perform similar to the established silicon cantilevers, with Q-factors in the range of 10–20. Static deflection of gold coated polymer cantilevers was characterized with heat cycling and self-assembled monolayer formation of mercaptohexanols. A hybrid mold concept allows easy modification of the surface topography, enabling customized mechanical properties of individual cantilevers. Combined with functionalization and surface patterning, the cantilever arrays are qualified for biomedical applications

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hybrid molds enable the fabrication of polymeric parts with features of different length scales by injection molding. The resulting polymer microelements combine optical or biological functionalities with designed mechanical properties. Two applications are chosen for illustration of this concept: As a first example, microelements for optical communication via fiber-to-fiber coupling are manufactured by combining two molds to a small mold insert. Both molds are fabricated using lithography and electroplating. As a second example, microcantilevers (μCs) for chemical sensing are surface patterned using a modular mold composed of a laser-machined cavity defining the geometry of the μCs, and an opposite flat tool side which is covered by a patterned polymer foil. Injection molding results in an array of 35 μm-thick μCs with microscale surface topographies. In both cases, when the mold is assembled and closed, reliefs are transferred onto one surface of the molded element whose outlines are defined by the micromold cavity. The main advantage of these hybrid methods lies in the simple integration of optical surface structures and gratings onto the surface of microcomponents with different sizes and orientations. This allows for independent development of functional properties and combinations thereof.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Variations of the surface structure and composition of the Au(110) electrode during the formation/lifting of the surface reconstruction and during the surface oxidation/reduction in 0.1 M aqueous sulfuric acid were studied by cyclic voltammetry, scanning tunneling microscopy and shell-isolated nanoparticle enhanced Raman spectroscopy. Annealing of the Au(110) electrode leads to a thermally-induced reconstruction formed by intermixed (1×3) and (1×2) phases. In a 0.1 M H2SO4 solution, the decrease of the potential of the atomically smooth Au(110)-(1×1) surface leads to the formation of a range of structures with increasing surface corrugation. The electrochemical oxidation of the Au(110) surface starts by the formation of anisotropic atomic rows of gold oxide. At higher potentials we observed a disordered structure of the surface gold oxide, similar to the one found for the Au(111) surface.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The forces required for the detachment of ferrocene (Fc) from β-cyclodextrin (βCD) in a single host (βCD)–guest (Fc) complex were investigated using force spectroscopy under electrochemical conditions. The redox state of the guest Fc moiety as well as the structure of the supporting matrix was found to decisively affect the nanomechanical properties of the complex.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Laser irradiation has numerous favorable characteristics, such as ablation or vaporization, hemostasis, biostimulation (photobiomodulation) and microbial inhibition and destruction, which induce various beneficial therapeutic effects and biological responses. Therefore, the use of lasers is considered effective and suitable for treating a variety of inflammatory and infectious oral conditions. The CO2 , neodymium-doped yttrium-aluminium-garnet (Nd:YAG) and diode lasers have mainly been used for periodontal soft-tissue management. With development of the erbium-doped yttrium-aluminium-garnet (Er:YAG) and erbium, chromium-doped yttrium-scandium-gallium-garnet (Er,Cr:YSGG) lasers, which can be applied not only on soft tissues but also on dental hard tissues, the application of lasers dramatically expanded from periodontal soft-tissue management to hard-tissue treatment. Currently, various periodontal tissues (such as gingiva, tooth roots and bone tissue), as well as titanium implant surfaces, can be treated with lasers, and a variety of dental laser systems are being employed for the management of periodontal and peri-implant diseases. In periodontics, mechanical therapy has conventionally been the mainstream of treatment; however, complete bacterial eradication and/or optimal wound healing may not be necessarily achieved with conventional mechanical therapy alone. Consequently, in addition to chemotherapy consisting of antibiotics and anti-inflammatory agents, phototherapy using lasers and light-emitting diodes has been gradually integrated with mechanical therapy to enhance subsequent wound healing by achieving thorough debridement, decontamination and tissue stimulation. With increasing evidence of benefits, therapies with low- and high-level lasers play an important role in wound healing/tissue regeneration in the treatment of periodontal and peri-implant diseases. This article discusses the outcomes of laser therapy in soft-tissue management, periodontal nonsurgical and surgical treatment, osseous surgery and peri-implant treatment, focusing on postoperative wound healing of periodontal and peri-implant tissues, based on scientific evidence from currently available basic and clinical studies, as well as on case reports.