19 resultados para Knowledge Discovery Tools
Resumo:
This thesis covers a broad part of the field of computational photography, including video stabilization and image warping techniques, introductions to light field photography and the conversion of monocular images and videos into stereoscopic 3D content. We present a user assisted technique for stereoscopic 3D conversion from 2D images. Our approach exploits the geometric structure of perspective images including vanishing points. We allow a user to indicate lines, planes, and vanishing points in the input image, and directly employ these as guides of an image warp that produces a stereo image pair. Our method is most suitable for scenes with large scale structures such as buildings and is able to skip the step of constructing a depth map. Further, we propose a method to acquire 3D light fields using a hand-held camera, and describe several computational photography applications facilitated by our approach. As the input we take an image sequence from a camera translating along an approximately linear path with limited camera rotations. Users can acquire such data easily in a few seconds by moving a hand-held camera. We convert the input into a regularly sampled 3D light field by resampling and aligning them in the spatio-temporal domain. We also present a novel technique for high-quality disparity estimation from light fields. Finally, we show applications including digital refocusing and synthetic aperture blur, foreground removal, selective colorization, and others.
Resumo:
Divalent metal transporter-1 (SLC11A2/DMT1) uses the H+ electrochemical gradient as the driving force to transport divalent metal ions such as Fe2+, Mn2+ and others metals into mammalian cells. DMT1 is ubiquitously expressed, most notably in proximal duodenum, immature erythroid cells, brain and kidney. This transporter mediates H+-coupled transport of ferrous iron across the apical membrane of enterocytes. In addition, in cells such as to erythroid precursors, following transferrin receptor (TfR) mediated endocytosis; it mediates H+-coupled exit of ferrous iron from endocytic vesicles into the cytosol. Dysfunction of human DMT1 is associated with several pathologies such as iron deficiency anemia hemochromatosis, Parkinson's disease and Alzheimer's disease, as well as colorectal cancer and esophageal adenocarcinoma, making DMT1 an attractive target for drug discovery. In the present study, we performed a ligand-based virtual screening of the Princeton database (700,000 commercially available compounds) to search for pharmacophore shape analogs of recently reported DMT1 inhibitors. We discovered a new compound, named pyrimidinone 8, which mediates a reversible linear non-competitive inhibition of human DMT1 (hDMT1) transport activity with a Ki of ∼20 μM. This compound does not affect hDMT1 cell surface expression and shows no dependence on extracellular pH. To our knowledge, this is the first experimental evidence that hDMT1 can be allosterically modulated by pharmacological agents. Pyrimidinone 8 represents a novel versatile tool compound and it may serve as a lead structure for the development of therapeutic compounds for pre-clinical assessment.
Resumo:
I argue that scientific realism, insofar as it is only committed to those scientific posits of which we have causal knowledge, is immune to Kyle Stanford’s argument from unconceived alternatives. This causal strategy (previously introduced, but not worked out in detail, by Anjan Chakravartty) is shown not to repeat the shortcomings of previous realist responses to Stanford’s argument. Furthermore, I show that the notion of causal knowledge underlying it can be made sufficiently precise by means of conceptual tools recently introduced into the debate on scientific realism. Finally, I apply this strategy to the case of Jean Perrin’s experimental work on the atomic hypothesis, disputing Stanford’s claim that the problem of unconceived alternatives invalidates a realist interpretation of this historical episode.
Resumo:
Developers commonly ask detailed and domain-specific questions about the software systems they are developing and maintaining. Integrated development environments (IDEs) form an essential category of tools for developing software that should support software engineering decision making. Unfortunately, rigid and generic IDEs that focus on low-level programming tasks, that promote code rather than data, and that suppress customization, offer limited support for informed decision making during software development. We propose to improve decision making within IDEs by moving from generic to context-aware IDEs through moldable tools. In this paper, we promote the idea of moldable tools, illustrate it with concrete examples, and discuss future research directions.