18 resultados para Kluger, Viviana


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The validation of rodent models for restless legs syndrome (Willis-Ekbom disease) and periodic limb movements during sleep requires knowledge of physiological limb motor activity during sleep in rodents. This study aimed to determine the physiological time structure of tibialis anterior activity during sleep in mice and rats, and compare it with that of healthy humans. Wild-type mice (n = 9) and rats (n = 8) were instrumented with electrodes for recording the electroencephalogram and electromyogram of neck muscles and both tibialis anterior muscles. Healthy human subjects (31 ± 1 years, n = 21) underwent overnight polysomnography. An algorithm for automatic scoring of tibialis anterior electromyogram events of mice and rats during non-rapid eye movement sleep was developed and validated. Visual scoring assisted by this algorithm had inter-rater sensitivity of 92-95% and false-positive rates of 13-19% in mice and rats. The distribution of the time intervals between consecutive tibialis anterior electromyogram events during non-rapid eye movement sleep had a single peak extending up to 10 s in mice, rats and human subjects. The tibialis anterior electromyogram events separated by intervals <10 s mainly occurred in series of two-three events, their occurrence rate in humans being lower than in mice and similar to that in rats. In conclusion, this study proposes reliable rules for scoring tibialis anterior electromyogram events during non-rapid eye movement sleep in mice and rats, demonstrating that their physiological time structure is similar to that of healthy young human subjects. These results strengthen the basis for translational rodent models of periodic limb movements during sleep and restless legs syndrome/Willis-Ekbom disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE To give a comprehensive overview of the phenotypic and genetic spectrum of STXBP1 encephalopathy (STXBP1-E) by systematically reviewing newly diagnosed and previously reported patients. METHODS We recruited newly diagnosed patients with STXBP1 mutations through an international network of clinicians and geneticists. Furthermore, we performed a systematic literature search to review the phenotypes of all previously reported patients. RESULTS We describe the phenotypic features of 147 patients with STXBP1-E including 45 previously unreported patients with 33 novel STXBP1 mutations. All patients have intellectual disability (ID), which is mostly severe to profound (88%). Ninety-five percent of patients have epilepsy. While one-third of patients presented with Ohtahara syndrome (21%) or West syndrome (9.5%), the majority has a nonsyndromic early-onset epilepsy and encephalopathy (53%) with epileptic spasms or tonic seizures as main seizure type. We found no correlation between severity of seizures and severity of ID or between mutation type and seizure characteristics or cognitive outcome. Neurologic comorbidities including autistic features and movement disorders are frequent. We also report 2 previously unreported adult patients with prominent extrapyramidal features. CONCLUSION De novo STXBP1 mutations are among the most frequent causes of epilepsy and encephalopathy. Most patients have severe to profound ID with little correlation among seizure onset, seizure severity, and the degree of ID. Accordingly, we hypothesize that seizure severity and ID present 2 independent dimensions of the STXBP1-E phenotype. STXBP1-E may be conceptualized as a complex neurodevelopmental disorder rather than a primary epileptic encephalopathy.