74 resultados para Klebsiella pneumoniae genome sequence
Resumo:
Avibacterium paragallinarum is an important pathogen of chicken livestock causing infectious coryza. Here, we report the draft genome sequence of the virulent A. paragallinarum serotype A strain JF4211 (2.8 Mbp and G+C content of 41%) and the two toxin operons discovered from the annotation of the genome.
Resumo:
Clostridium chauvoei is the etiological agent of blackleg, a disease of cattle and sheep with high mortality rates, causing severe economic losses in livestock production. Here, we report the draft genome sequence of the virulent C. chauvoei strain JF4335 (2.8 Mbp and 28% G+C content) and the annotation of the genome.
Resumo:
Members of the “Mycoplasma mycoides cluster” represent important livestock pathogens worldwide. We report the genome sequence of Mycoplasma feriruminatoris sp. nov., the closest relative to the “Mycoplasma mycoides cluster” and the fastest-growing Mycoplasma species described to date.
Resumo:
Increasing trends for invasive infections with extended-spectrum cephalosporin-resistant (ESC-R) Enterobacteriaceae have been described in many countries worldwide. However, data on the rates of ESC-R isolates in non-invasive infections and in the outpatient setting are scarce. We used a laboratory-based nationwide surveillance system to compare temporal trends of ESC-R rates in Escherichia coli and Klebsiella pneumoniae for in- and outpatients in Switzerland. Our data showed a significant increase in ESC-R rates from 1% to 5.8% in E. coli (p<0.001) and from 1.1% to 4.4% in K. pneumoniae (p=0.002) during an eight-year period (2004–2011). For E. coli, the increase was significantly higher in inpatients (from 1.2% to 6.6%), in patients residing in eastern Switzerland (from 1.0% to 6.2%), in patients older than 45 years (from 1.2% to 6.7%), and in male patients (from 1.2% to 8.1%). While the increase in inpatients was linear (p<0.001) for E. coli, the increase of ESC R K. pneumoniae isolates was the result of multiple outbreaks in several institutions. Notably, an increasing proportion of ESC-R E. coli was co-resistant to both trimethoprim-sulfamethoxazole and quinolones (42% in 2004 to 49.1% in 2011, p=0.009), further limiting the available oral therapeutic options.
Resumo:
We report the complete genome sequence of bovine pestivirus strain PG-2. The sequence data from this virus showed that PG-2 is closely related to the giraffe pestivirus strain H138. PG-2 and H138 belong to one pestivirus species that should be considered an approved member of the genus Pestivirus.
Resumo:
We sequenced the complete genome of the bovine viral diarrhea virus (BVDV) strain Carlito. It belongs to the subgenotype 1e that is described in Europe only and represents the second most prevalent subgenotype in Switzerland. This is the first report of a full-length sequence of BVDV-1e.
Resumo:
A multilocus sequence typing (MLST) scheme was established and evaluated for Mycoplasma hyopneumoniae, the etiologic agent of enzootic pneumonia in swine with the aim of defining strains. Putative target genes were selected by genome sequence comparisons. Out of 12 housekeeping genes chosen and experimentally validated, the 7 genes efp, metG, pgiB, recA, adk, rpoB, and tpiA were finally used to establish the MLST scheme. Their usefulness was assessed individually and in combination using a set of well-defined field samples and strains of M. hyopneumoniae. A reduction to the three targets showing highest variation (adk, rpoB, and tpiA) was possible resulting in the same number of sequence types as using the seven targets. The established MLST approach was compared with the recently described typing method using the serine-rich repeat motif-encoding region of the p146 gene. There was coherence between the two methods, but MLST resulted in a slightly higher resolution. Farms recognized to be affected by enzootic pneumonia were always associated with a single M. hyopneumoniae clone, which in most cases differed from farm to farm. However, farms in close geographic or operational contact showed identical clones as defined by MLST typing. Population analysis showed that recombination in M. hyopneumoniae occurs and that strains are very diverse with only limited clonality observed. Elaborate classical MLST schemes using multiple targets for M. hyopneumoniae might therefore be of limited value. In contrast, MLST typing of M. hyopneumoniae using the three genes adk, rpoB, and tpiA seems to be sufficient for epidemiological investigations by direct amplification of target genes from lysate of clinical material without prior cultivation.
Resumo:
The macronuclear genome of the ciliate Oxytricha trifallax displays an extreme and unique eukaryotic genome architecture with extensive genomic variation. During sexual genome development, the expressed, somatic macronuclear genome is whittled down to the genic portion of a small fraction (∼5%) of its precursor "silent" germline micronuclear genome by a process of "unscrambling" and fragmentation. The tiny macronuclear "nanochromosomes" typically encode single, protein-coding genes (a small portion, 10%, encode 2-8 genes), have minimal noncoding regions, and are differentially amplified to an average of ∼2,000 copies. We report the high-quality genome assembly of ∼16,000 complete nanochromosomes (∼50 Mb haploid genome size) that vary from 469 bp to 66 kb long (mean ∼3.2 kb) and encode ∼18,500 genes. Alternative DNA fragmentation processes ∼10% of the nanochromosomes into multiple isoforms that usually encode complete genes. Nucleotide diversity in the macronucleus is very high (SNP heterozygosity is ∼4.0%), suggesting that Oxytricha trifallax may have one of the largest known effective population sizes of eukaryotes. Comparison to other ciliates with nonscrambled genomes and long macronuclear chromosomes (on the order of 100 kb) suggests several candidate proteins that could be involved in genome rearrangement, including domesticated MULE and IS1595-like DDE transposases. The assembly of the highly fragmented Oxytricha macronuclear genome is the first completed genome with such an unusual architecture. This genome sequence provides tantalizing glimpses into novel molecular biology and evolution. For example, Oxytricha maintains tens of millions of telomeres per cell and has also evolved an intriguing expansion of telomere end-binding proteins. In conjunction with the micronuclear genome in progress, the O. trifallax macronuclear genome will provide an invaluable resource for investigating programmed genome rearrangements, complementing studies of rearrangements arising during evolution and disease.
Resumo:
A comprehensive second-generation whole genome radiation hybrid (RH II), cytogenetic and comparative map of the horse genome (2n = 64) has been developed using the 5000rad horse x hamster radiation hybrid panel and fluorescence in situ hybridization (FISH). The map contains 4,103 markers (3,816 RH; 1,144 FISH) assigned to all 31 pairs of autosomes and the X chromosome. The RH maps of individual chromosomes are anchored and oriented using 857 cytogenetic markers. The overall resolution of the map is one marker per 775 kilobase pairs (kb), which represents a more than five-fold improvement over the first-generation map. The RH II incorporates 920 markers shared jointly with the two recently reported meiotic maps. Consequently the two maps were aligned with the RH II maps of individual autosomes and the X chromosome. Additionally, a comparative map of the horse genome was generated by connecting 1,904 loci on the horse map with genome sequences available for eight diverse vertebrates to highlight regions of evolutionarily conserved syntenies, linkages, and chromosomal breakpoints. The integrated map thus obtained presents the most comprehensive information on the physical and comparative organization of the equine genome and will assist future assemblies of whole genome BAC fingerprint maps and the genome sequence. It will also serve as a tool to identify genes governing health, disease and performance traits in horses and assist us in understanding the evolution of the equine genome in relation to other species.
Resumo:
BACKGROUND A cost-effective strategy to increase the density of available markers within a population is to sequence a small proportion of the population and impute whole-genome sequence data for the remaining population. Increased densities of typed markers are advantageous for genome-wide association studies (GWAS) and genomic predictions. METHODS We obtained genotypes for 54 602 SNPs (single nucleotide polymorphisms) in 1077 Franches-Montagnes (FM) horses and Illumina paired-end whole-genome sequencing data for 30 FM horses and 14 Warmblood horses. After variant calling, the sequence-derived SNP genotypes (~13 million SNPs) were used for genotype imputation with the software programs Beagle, Impute2 and FImpute. RESULTS The mean imputation accuracy of FM horses using Impute2 was 92.0%. Imputation accuracy using Beagle and FImpute was 74.3% and 77.2%, respectively. In addition, for Impute2 we determined the imputation accuracy of all individual horses in the validation population, which ranged from 85.7% to 99.8%. The subsequent inclusion of Warmblood sequence data further increased the correlation between true and imputed genotypes for most horses, especially for horses with a high level of admixture. The final imputation accuracy of the horses ranged from 91.2% to 99.5%. CONCLUSIONS Using Impute2, the imputation accuracy was higher than 91% for all horses in the validation population, which indicates that direct imputation of 50k SNP-chip data to sequence level genotypes is feasible in the FM population. The individual imputation accuracy depended mainly on the applied software and the level of admixture.
Resumo:
Puumala virus (PUUV) is one of the predominant hantavirus species in Europe causing mild to moderate cases of haemorrhagic fever with renal syndrome. Parts of Lower Saxony in north-western Germany are endemic for PUUV infections. In this study, the complete PUUV genome sequence of a bank vole-derived tissue sample from the 2007 outbreak was determined by a combined primer-walking and RNA ligation strategy. The S, M and L genome segments were 1,828, 3,680 and 6,550 nucleotides in length, respectively. Sliding-window analyses of the nucleotide sequences of all available complete PUUV genomes indicated a non-homogenous distribution of variability with hypervariable regions located at the 3′-ends of the S and M segments. The overall similarity of the coding genome regions to the other PUUV strains ranged between 80.1 and 84.7 % at the level of the nucleotide sequence and between 89.5 and 98.1 % for the deduced amino acid sequences. In comparison to the phylogenetic trees of the complete coding sequences, trees based on partial segments revealed a general drop in phylogenetic support and a lower resolution. The Astrup strain S and M segment sequences showed the highest similarity to sequences of strains from geographically close sites in the Osnabrück Hills region. In conclusion, a primer-walking-mediated strategy resulted in the determination of the first complete nucleotide sequence of a PUUV strain from Central Europe. Different levels of variability along the genome provide the opportunity to choose regions for analyses according to the particular research question, e.g., large-scale phylogenetics or within-host evolution.
Resumo:
INTRODUCTION blaOXA-48, blaNDM-1 and blaCTX-M-3 are clinically relevant resistance genes, frequently associated with the broad-host range plasmids of the IncL/M group. The L and M plasmids belong to two compatible groups, which were incorrectly classified together by molecular methods. In order to understand their evolution, we fully sequenced four IncL/M plasmids, including the reference plasmids R471 and R69, the recently described blaOXA-48-carrying plasmid pKPN-El.Nr7 from a Klebsiella pneumoniae isolated in Bern (Switzerland), and the blaSHV-5 carrying plasmid p202c from a Salmonella enterica from Tirana (Albania). METHODS Sequencing was performed using 454 Junior Genome Sequencer (Roche). Annotation was performed using Sequin and Artemis software. Plasmid sequences were compared with 13 fully sequenced plasmids belonging to the IncL/M group available in GenBank. RESULTS Comparative analysis of plasmid genomes revealed two distinct genetic lineages, each containing one of the R471 (IncL) and R69 (IncM) reference plasmids. Conjugation experiments demonstrated that plasmids representative of the IncL and IncM groups were compatible with each other. The IncL group is constituted by the blaOXA-48-carrying plasmids and R471. The IncM group contains two sub-types of plasmids named IncM1 and IncM2 that are each incompatible. CONCLUSION This work re-defines the structure of the IncL and IncM families and ascribes a definitive designation to the fully sequenced IncL/M plasmids available in GenBank.
Resumo:
Gram-negative, coccoid, non-motile bacteria that are catalase-, urease- and indole-negative, facultatively anaerobic and oxidase-positive were isolated from the bovine rumen using an improved selective medium for members of the Pasteurellaceae. All strains produced significant amounts of succinic acid under anaerobic conditions with glucose as substrate. Phenotypic characterization and multilocus sequence analysis (MLSA) using 16S rRNA, rpoB, infB and recN genes were performed on seven independent isolates. All four genes showed high sequence similarity to their counterparts in the genome sequence of the patent strain MBEL55E, but less than 95 % 16S rRNA gene sequence similarity to any other species of the Pasteurellaceae. Genetically these strains form a very homogeneous group in individual as well as combined phylogenetic trees, clearly separated from other genera of the family from which they can also be separated based on phenotypic markers. Genome relatedness as deduced from the recN gene showed high interspecies similarities, but again low similarity to any of the established genera of the family. No toxicity towards bovine, human or fish cells was observed and no RTX toxin genes were detected in members of the new taxon. Based on phylogenetic clustering in the MLSA analysis, the low genetic similarity to other genera and the phenotypic distinction, we suggest to classify these bovine rumen isolates as Basfia succiniciproducens gen. nov., sp. nov. The type strain is JF4016(T) (=DSM 22022(T) =CCUG 57335(T)).
Resumo:
The apicomplexan parasites Theileria annulata and Theileria parva cause severe lymphoproliferative disorders in cattle. Disease pathogenesis is linked to the ability of the parasite to transform the infected host cell (leukocyte) and induce uncontrolled proliferation. It is known that transformation involves parasite dependent perturbation of leukocyte signal transduction pathways that regulate apoptosis, division and gene expression, and there is evidence for the translocation of Theileria DNA binding proteins to the host cell nucleus. However, the parasite factors responsible for the inhibition of host cell apoptosis, or induction of host cell proliferation are unknown. The recent derivation of the complete genome sequence for both T. annulata and T. parva has provided a wealth of information that can be searched to identify molecules with the potential to subvert host cell regulatory pathways. This review summarizes current knowledge of the mechanisms used by Theileria parasites to transform the host cell, and highlights recent work that has mined the Theileria genomes to identify candidate manipulators of host cell phenotype.
Resumo:
A genetic linkage map of the horse consisting of 742 markers, which comprises a single linkage group for each of the autosomes and the X chromosome, is presented. The map has been generated from two three-generation full-sibling reference families, sired by the same stallion, in which there are 61 individuals in the F2 generation. Each linkage group has been assigned to a chromosome and oriented with reference to markers mapped by fluorescence in situ hybridization. The average interval between markers is 3.7 cM and the linkage groups collectively span 2772 cM. The 742 markers comprise 734 microsatellite and 8 gene-based markers. The utility of the microsatellite markers for comparative mapping has been significantly enhanced by comparing their flanking sequences with the human genome sequence; this enabled conserved segments between human and horse to be identified. The new map provides a valuable resource for genetically mapping traits of interest in the horse.