24 resultados para Kinematics


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a measurement of the top quark pair () production charge asymmetry A (C) using 4.7 fb(-1) of proton-proton collisions at a centre-of-mass energy root s = 7 TeV collected by the ATLAS detector at the LHC. A -enriched sample of events with a single lepton (electron or muon), missing transverse momentum and at least four high transverse momentum jets, of which at least one is tagged as coming from a b-quark, is selected. A likelihood fit is used to reconstruct the event kinematics. A Bayesian unfolding procedure is employed to estimate A (C) at the parton-level. The measured value of the production charge asymmetry is A (C) = 0.006 +/- 0.010, where the uncertainty includes both the statistical and the systematic components. Differential A (C) measurements as a function of the invariant mass, the rapidity and the transverse momentum of the system are also presented. In addition, A (C) is measured for a subset of events with large velocity, where physics beyond the Standard Model could contribute. All measurements are consistent with the Standard Model predictions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

INTRODUCTION An accurate description of the biomechanical behavior of the spine is crucial for the planning of scoliotic surgical correction as well as for the understanding of degenerative spine disorders. The current clinical assessments of spinal mechanics such as side-bending or fulcrum-bending tests rely on the displacement of the spine observed during motion of the patient. Since these tests focused solely on the spinal kinematics without considering mechanical loads, no quantification of the mechanical flexibility of the spine can be provided. METHODS A spinal suspension test (SST) has been developed to simultaneously monitor the force applied on the spine and the induced vertebral displacements. The system relies on cervical elevation of the patient and orthogonal radiographic images are used to measure the position of the vertebras. The system has been used to quantify the spinal flexibility on five AIS patients. RESULTS Based on the SST, the overall spinal flexibility varied between 0.3 °/Nm for the patient with the stiffer curve and 2 °/Nm for the less rigid curve. A linear correlation was observed between the overall spinal flexibility and the change in Cobb angle. In addition, the segmental flexibility calculated for five segments around the apex was 0.13 ± 0.07 °/Nm, which is similar to intra-operative stiffness measurements previously published. CONCLUSIONS In summary, the SST seems suitable to provide pre-operative information on the complex functional behavior and stiffness of spinal segments under physiological loading conditions. Such tools will become increasingly important in the future due to the ever-increasing complexity of the surgical instrumentation and procedures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Osteoarthritis of the knee is a major clinical burden. Recent decades have witnessed an improved understanding of knee physiology and kinematics, which has led to the introduction of a wide range of enhanced prosthetic implant designs for a variety of indications. However, the increase in the number of procedures performed annually has led to complications being encountered at higher rates than ever before, requiring the development of optimised therapeutic strategies. The future holds several promising options, primarily in the treatment of early osteoarthritis, biological therapy, surgical navigation and patient-specific implants. This review provides an insight into the current options of knee arthroplasty, with emphasis on available designs, and examines the complications that may be encountered.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND The Journey bicruciate substituting (BCS) total knee replacement (TKR) is intended to improve knee kinematics by more closely approximating the surfaces of a normal knee. The purpose of this analysis was to address the safety of Journey BCS knees by studying early complication and revision rates in a consecutive case series. METHODS Between December 2006 and May 2011, a single surgeon implanted 226 Journey BCS total knee prostheses in 191 patients (124 women, 67 men) who were eligible for study. Mean age at surgery was 68 years (41-85 years).Outcome measures were early complications and minor and major revision rates. All complications were considered, irrespective of whether conservative treatment or revision was required. RESULTS The average implantation time was 3.5 years (range 1.3-5.8 years). Thirty-three complications (14.6% of 226 knees) required minor or major revision surgery in 25 patients. The remaining eight patients were treated conservatively. Sixteen minor revisions were performed in 12 patients. Thirteen major revisions were required in 13 patients, which results in a rate of 1.65 major revisions per 100 component years. The linear trend of the early complication rate by treatment year was not significant (p = .22).Multivariate logistic regression showed no significant predictors for the occurrence of a complication or for revision surgery. A tendency towards higher complication rates was observed in female patients, although it was not significant (p = .066). CONCLUSIONS The complication and revision rates of the Journey BCS knee implant are high in comparison with those reported for other established total knee systems. Caution is advised when using this implant, particularly for less experienced knee surgeons.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Accurate three-dimensional (3D) models of lumbar vertebrae are required for image-based 3D kinematics analysis. MRI or CT datasets are frequently used to derive 3D models but have the disadvantages that they are expensive, time-consuming or involving ionizing radiation (e.g., CT acquisition). In this chapter, we present an alternative technique that can reconstruct a scaled 3D lumbar vertebral model from a single two-dimensional (2D) lateral fluoroscopic image and a statistical shape model. Cadaveric studies are conducted to verify the reconstruction accuracy by comparing the surface models reconstructed from a single lateral fluoroscopic image to the ground truth data from 3D CT segmentation. A mean reconstruction error between 0.7 and 1.4 mm was found.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Numerous designs of bioprosthetic valves exist. The sutureless surgical valve is a newer design concept which combines elements of the transcatheter valve technology with surgical valves. This design aims at shorter and easier implantation. It was the aim of this study to perform hemodynamic and kinematic measurements for this type of valves to serve as a baseline for following studies which investigate the effect of the aortic root on the valve performance. To this end, the Edwards Intuity aortic valve was investigated in a new in vitro flow loop mimicking the left heart. The valve was implanted in a transparent, compliant aortic root model, and the valve kinematics was investigated using a high speed camera together with synchronized hemodynamic measurements of pressures and flows. The valve closure was asynchronous (one by one leaflet), and the valve started to close before the deceleration of the fluid. The aortic root model showed a dilation of the sinuses which was different to the ascending aorta, and the annulus was found to move towards the left ventricle during diastole and towards the aorta during systole.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Measurements of fiducial and differential cross sections are presented for Higgs boson production in proton-proton collisions at a centre-of-mass energy of √s = 8TeV. The analysis is performed in the H → γγ decay channel using 20.3 fb−1 of data recorded by the ATLAS experiment at the CERN Large Hadron Collider. The signal is extracted using a fit to the diphoton invariant mass spectrum assuming that the width of the resonance is much smaller than the experimental resolution. The signal yields are corrected for the effects of detector inefficiency and resolution. The pp → H → γγ fiducial cross section is measured to be 43.2 ±9.4 (stat.) +3.2 −2.9 (syst.) ±1.2 (lumi) fb for a Higgs boson of mass 125.4 GeV decaying to two isolated photons that have transverse momentum greater than 35% and 25% of the diphoton invariant mass and each with absolute pseudorapidity less than 2.37. Four additional fiducial cross sections and two cross-section limits are presented in phase space regions that test the theoretical modelling of different Higgs boson production mechanisms, or are sensitive to physics beyond the Standard Model. Differential cross sections are also presented, as a function of variables related to the diphoton kinematics and the jet activity produced in the Higgs boson events. The observed spectra are statistically limited but broadly in line with the theoretical expectations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: Minimizing resection and preserving leaflet tissue has been previously shown to be beneficial for mitral valve function and leaflet kinematics after repair of acute posterior leaflet prolapse in porcine valves. We examined the effects of different additional methods of mitral valve repair (neochordoplasty, ring annuloplasty, edge-to-edge repair and triangular resection) on hemodynamics at different heart rates in an experimental model. Methods: Severe acute P2 prolapse was created in eight porcine mitral valves by resecting the posterior marginal chordae. Valve hemodynamics was quantified under pulsatile conditions in an in vitro heart simulator before and after surgical manipulation. Mitral regurgitation was corrected using four different methods of repair on the same valve: neochordoplasty with expanded polytetrafluoroethylene sutures alone and together with ring annuloplasty, edge-to-edge repair and triangular resection, both with non-restrictive annuloplasty. Residual mitral valve leak, trans-valvular pressure gradients, flow and cardiac output were measured at 60 and 80 beats/min. A validated statistical linear mixed model was used to analyze the effect of treatment. The p values were calculated using a two-sided Wald test. Results: Only neochordoplasty with expanded polytetrafluoroethylene sutures but without ring annuloplasty achieved similar hemodynamics compared to those of the native mitral valve (p range 0.071-0.901). Trans-valvular diastolic pressure gradients were within a physiologic range but significantly higher than those of the native valve following neochordoplasty with ring annuloplasty (p=0.000), triangular resection (p=0.000) and edge-to-edge repair (p=0.000). Neochordoplasty alone was significantly better in terms of hemodynamic than neochordoplasty with a ring annuloplasty (p=0.000). These values were stable regardless of heart rate or ring size. Conclusions: Neochordoplasty without ring annuloplasty is the only repair technique able to achieve almost native physiological hemodynamics after correction of leaflet prolapse in a porcine experimental model of acute chordal rupture.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An autonomous energy source within a human body is of key importance in the development of medical implants. This work deals with the modelling and the validation of an energy harvesting device which converts the myocardial contractions into electrical energy. The mechanism consists of a clockwork from a commercially available wrist watch. We developed a physical model which is able to predict the total amount of energy generated when applying an external excitation. For the validation of the model, a custom-made hexapod robot was used to accelerate the harvesting device along a given trajectory. We applied forward kinematics to determine the actual motion experienced by the harvesting device. The motion provides translational as well as rotational motion information for accurate simulations in three-dimensional space. The physical model could be successfully validated.