21 resultados para Kernel of Extendable Language of Applied Logic
Resumo:
Justification Logic studies epistemic and provability phenomena by introducing justifications/proofs into the language in the form of justification terms. Pure justification logics serve as counterparts of traditional modal epistemic logics, and hybrid logics combine epistemic modalities with justification terms. The computational complexity of pure justification logics is typically lower than that of the corresponding modal logics. Moreover, the so-called reflected fragments, which still contain complete information about the respective justification logics, are known to be in~NP for a wide range of justification logics, pure and hybrid alike. This paper shows that, under reasonable additional restrictions, these reflected fragments are NP-complete, thereby proving a matching lower bound. The proof method is then extended to provide a uniform proof that the corresponding full pure justification logics are $\Pi^p_2$-hard, reproving and generalizing an earlier result by Milnikel.
Resumo:
In the course of language acquisition learners have to deal with the task of producing narrative texts that are coherent across a range of conceptual domains (space, time, entities) -- both within as well as across utterances. The organization of information is analyzed in this study, on the basis of retellings of a silent film, in terms of devices used in the coordination and subordination of events within the narrative sequence. The focus on subordination reflects a core grammatical difference between Italian and French, as Italian is a null-subject language while French is not. The implications of this contrast for information structure include differences in topic management within the sequence of events. The present study investigates in how far Italian-French bilingual speakers acquire the patterns of monolingual speakers of Italian. It compares how early and late bilinguals of these two languages proceed when linking information in narratives in Italian.
Resumo:
We define an applicative theory of truth TPT which proves totality exactly for the polynomial time computable functions. TPT has natural and simple axioms since nearly all its truth axioms are standard for truth theories over an applicative framework. The only exception is the axiom dealing with the word predicate. The truth predicate can only reflect elementhood in the words for terms that have smaller length than a given word. This makes it possible to achieve the very low proof-theoretic strength. Truth induction can be allowed without any constraints. For these reasons the system TPT has the high expressive power one expects from truth theories. It allows embeddings of feasible systems of explicit mathematics and bounded arithmetic. The proof that the theory TPT is feasible is not easy. It is not possible to apply a standard realisation approach. For this reason we develop a new realisation approach whose realisation functions work on directed acyclic graphs. In this way, we can express and manipulate realisation information more efficiently.
Resumo:
We partially solve a long-standing problem in the proof theory of explicit mathematics or the proof theory in general. Namely, we give a lower bound of Feferman’s system T0 of explicit mathematics (but only when formulated on classical logic) with a concrete interpretat ion of the subsystem Σ12-AC+ (BI) of second order arithmetic inside T0. Whereas a lower bound proof in the sense of proof-theoretic reducibility or of ordinalanalysis was already given in 80s, the lower bound in the sense of interpretability we give here is new. We apply the new interpretation method developed by the author and Zumbrunnen (2015), which can be seen as the third kind of model construction method for classical theories, after Cohen’s forcing and Krivine’s classical realizability. It gives us an interpretation between classical theories, by composing interpretations between intuitionistic theories.