48 resultados para KINETIC OSCILLATIONS
Resumo:
BACKGROUND: The forced oscillation technique (FOT) requires minimal patient cooperation and is feasible in preschool children. Few data exist on respiratory function changes measured using FOT following inhaled bronchodilators (BD) in healthy young children, limiting the clinical applications of BD testing in this age group. A study was undertaken to determine the most appropriate method of quantifying BD responses using FOT in healthy young children and those with common respiratory conditions including cystic fibrosis, neonatal chronic lung disease and asthma and/or current wheeze. METHODS: A pseudorandom FOT signal (4-48 Hz) was used to examine respiratory resistance and reactance at 6, 8 and 10 Hz; 3-5 acceptable measurements were made before and 15 min after the administration of salbutamol. The post-BD response was expressed in absolute and relative (percentage of baseline) terms. RESULTS: Significant BD responses were seen in all groups. Absolute changes in BD responses were related to baseline lung function within each group. Relative changes in BD responses were less dependent on baseline lung function and were independent of height in healthy children. Those with neonatal chronic lung disease showed a strong baseline dependence in their responses. The BD response in children with cystic fibrosis, asthma or wheeze (based on both group mean data and number of responders) was not greater than in healthy children. CONCLUSIONS: The BD response assessed by the FOT in preschool children should be expressed as a relative change to account for the effect of baseline lung function. The limits for a positive BD response of -40% and 65% for respiratory resistance and reactance, respectively, are recommended.
Resumo:
Early network oscillations and spindle bursts are typical patterns of spontaneous rhythmic activity in cortical networks of neonatal rodents in vivo and in vitro. The latter can also be triggered in vivo by stimulation of afferent inputs. The mechanisms underlying such oscillations undergo profound developmental changes in the first postnatal weeks. Their possible role in cortical development is postulated but not known in detail. We have studied spontaneous and evoked patterns of activity in organotypic cultures of slices from neonatal rat cortex grown on multielectrode arrays (MEAs) for extracellular single- and multi-unit recording. Episodes of spontaneous spike discharge oscillations at 7 - 25 Hz lasting for 0.6 - 3 seconds appeared in about half of these cultures spontaneously and could be triggered by electrical stimulation of few distinct electrodes. These oscillations usually covered only restricted areas of the slices. Besides oscillations, single population bursts that spread in a wavelike manner over the whole slice also appeared spontaneously and were triggered by electrical stimulation. In most but not all cultures, population bursts preceded the oscillations. Both population bursts and spike discharge oscillations required intact glutamatergic synaptic transmission since they were suppressed by the AMPA/kainate glutamate receptor antagonist CNQX. The NMDA antagonist d-APV suppressed the oscillations but not the population bursts, suggesting an involvement of NMDA receptors in the oscillations. These findings show that spindle burst like cortical rhythms are reproduced in organotypic cultures of neonatal cortex. The culture model thus allows investigating the role of such rhythms in cortical circuit formation. Supported by SNF grant No. 3100A0-107641/1.
Substrate binding tunes conformational flexibility and kinetic stability of an amino acid antiporter
Resumo:
We used single molecule dynamic force spectroscopy to unfold individual serine/threonine antiporters SteT from Bacillus subtilis. The unfolding force patterns revealed interactions and energy barriers that stabilized structural segments of SteT. Substrate binding did not establish strong localized interactions but appeared to be facilitated by the formation of weak interactions with several structural segments. Upon substrate binding, all energy barriers of the antiporter changed thereby describing the transition from brittle mechanical properties of SteT in the unbound state to structurally flexible conformations in the substrate-bound state. The lifetime of the unbound state was much shorter than that of the substrate-bound state. This leads to the conclusion that the unbound state of SteT shows a reduced conformational flexibility to facilitate specific substrate binding and a reduced kinetic stability to enable rapid switching to the bound state. In contrast, the bound state of SteT showed an increased conformational flexibility and kinetic stability such as required to enable transport of substrate across the cell membrane. This result supports the working model of antiporters in which alternate substrate access from one to the other membrane surface occurs in the substrate-bound state.
Resumo:
Our knowledge about the lunar environment is based on a large volume of ground-based, remote, and in situ observations. These observations have been conducted at different times and sampled different pieces of such a complex system as the surface-bound exosphere of the Moon. Numerical modeling is the tool that can link results of these separate observations into a single picture. Being validated against previous measurements, models can be used for predictions and interpretation of future observations results. In this paper we present a kinetic model of the sodium exosphere of the Moon as well as results of its validation against a set of ground-based and remote observations. The unique characteristic of the model is that it takes the orbital motion of the Moon and the Earth into consideration and simulates both the exosphere as well as the sodium tail self-consistently. The extended computational domain covers the part of the Earth’s orbit at new Moon, which allows us to study the effect of Earth’s gravity on the lunar sodium tail. The model is fitted to a set of ground-based and remote observations by tuning sodium source rate as well as values of sticking, and accommodation coefficients. The best agreement of the model results with the observations is reached when all sodium atoms returning from the exosphere stick to the surface and the net sodium escape rate is about 5.3 × 1022 s−1.
Resumo:
While analysis and interpretation of structural epileptogenic lesion is an essential task for the neuroradiologist in clinical practice, a substantial body of epilepsy research has shown that focal lesions influence brain areas beyond the epileptogenic lesion, across ensembles of functionally and anatomically connected brain areas. In this review article, we aim to provide an overview about altered network compositions in epilepsy, as measured with current advanced neuroimaging techniques to characterize the initiation and spread of epileptic activity in the brain with multimodal noninvasive imaging techniques. We focus on resting-state functional magnetic resonance imaging (MRI) and simultaneous electroencephalography/fMRI, and oppose the findings in idiopathic generalized versus focal epilepsies. These data indicate that circumscribed epileptogenic lesions can have extended effects on many brain systems. Although epileptic seizures may involve various brain areas, seizure activity does not spread diffusely throughout the brain but propagates along specific anatomic pathways that characterize the underlying epilepsy syndrome. Such a functionally oriented approach may help to better understand a range of clinical phenomena such as the type of cognitive impairment, the development of pharmacoresistance, the propagation pathways of seizures, or the success of epilepsy surgery.
Resumo:
A first result of the search for ν ( )μ( ) → ν ( )e( ) oscillations in the OPERA experiment, located at the Gran Sasso Underground Laboratory, is presented. The experiment looked for the appearance of ν ( )e( ) in the CNGS neutrino beam using the data collected in 2008 and 2009. Data are compatible with the non-oscillation hypothesis in the three-flavour mixing model. A further analysis of the same data constrains the non-standard oscillation parameters θ (new) and suggested by the LSND and MiniBooNE experiments. For large values (>0.1 eV(2)), the OPERA 90% C.L. upper limit on sin(2)(2θ (new)) based on a Bayesian statistical method reaches the value 7.2 × 10(−3).
Resumo:
A first result of the search for nu(mu)->nu(e) oscillations in the OPERA experiment, located at the Gran Sasso Underground Laboratory, is presented. The experiment looked for the appearance of nu(e) in the CNGS neutrino beam using the data collected in 2008 and 2009. Data are compatible with the non-oscillation hypothesis in the three-flavour mixing model. A further analysis of the same data constrains the non-standard oscillation parameters theta(new) and Delta m(new)(2) suggested by the LSND and MiniBooNE experiments. For large Delta m(new)(2) values (>0.1 eV(2)), the OPERA 90% C.L. upper limit on sin(2)(2 theta(new)) based on a Bayesian statistical method reaches the value 7.2 x 10(-3).