41 resultados para Just-in-time
Resumo:
Objective: Processes occurring in the course of psychotherapy are characterized by the simple fact that they unfold in time and that the multiple factors engaged in change processes vary highly between individuals (idiographic phenomena). Previous research, however, has neglected the temporal perspective by its traditional focus on static phenomena, which were mainly assessed at the group level (nomothetic phenomena). To support a temporal approach, the authors introduce time-series panel analysis (TSPA), a statistical methodology explicitly focusing on the quantification of temporal, session-to-session aspects of change in psychotherapy. TSPA-models are initially built at the level of individuals and are subsequently aggregated at the group level, thus allowing the exploration of prototypical models. Method: TSPA is based on vector auto-regression (VAR), an extension of univariate auto-regression models to multivariate time-series data. The application of TSPA is demonstrated in a sample of 87 outpatient psychotherapy patients who were monitored by postsession questionnaires. Prototypical mechanisms of change were derived from the aggregation of individual multivariate models of psychotherapy process. In a 2nd step, the associations between mechanisms of change (TSPA) and pre- to postsymptom change were explored. Results: TSPA allowed a prototypical process pattern to be identified, where patient's alliance and self-efficacy were linked by a temporal feedback-loop. Furthermore, therapist's stability over time in both mastery and clarification interventions was positively associated with better outcomes. Conclusions: TSPA is a statistical tool that sheds new light on temporal mechanisms of change. Through this approach, clinicians may gain insight into prototypical patterns of change in psychotherapy.
Resumo:
The paralysis-by-analysis phenomenon, i.e., attending to the execution of one's movement impairs performance, has gathered a lot of attention over recent years (see Wulf, 2007, for a review). Explanations of this phenomenon, e.g., the hypotheses of constrained action (Wulf et al., 2001) or of step-by-step execution (Masters, 1992; Beilock et al., 2002), however, do not refer to the level of underlying mechanisms on the level of sensorimotor control. For this purpose, a “nodal-point hypothesis” is presented here with the core assumption that skilled motor behavior is internally based on sensorimotor chains of nodal points, that attending to intermediate nodal points leads to a muscular re-freezing of the motor system at exactly and exclusively these points in time, and that this re-freezing is accompanied by the disruption of compensatory processes, resulting in an overall decrease of motor performance. Two experiments, on lever sequencing and basketball free throws, respectively, are reported that successfully tested these time-referenced predictions, i.e., showing that muscular activity is selectively increased and compensatory variability selectively decreased at movement-related nodal points if these points are in the focus of attention.
Resumo:
Learning by reinforcement is important in shaping animal behavior, and in particular in behavioral decision making. Such decision making is likely to involve the integration of many synaptic events in space and time. However, using a single reinforcement signal to modulate synaptic plasticity, as suggested in classical reinforcement learning algorithms, a twofold problem arises. Different synapses will have contributed differently to the behavioral decision, and even for one and the same synapse, releases at different times may have had different effects. Here we present a plasticity rule which solves this spatio-temporal credit assignment problem in a population of spiking neurons. The learning rule is spike-time dependent and maximizes the expected reward by following its stochastic gradient. Synaptic plasticity is modulated not only by the reward, but also by a population feedback signal. While this additional signal solves the spatial component of the problem, the temporal one is solved by means of synaptic eligibility traces. In contrast to temporal difference (TD) based approaches to reinforcement learning, our rule is explicit with regard to the assumed biophysical mechanisms. Neurotransmitter concentrations determine plasticity and learning occurs fully online. Further, it works even if the task to be learned is non-Markovian, i.e. when reinforcement is not determined by the current state of the system but may also depend on past events. The performance of the model is assessed by studying three non-Markovian tasks. In the first task, the reward is delayed beyond the last action with non-related stimuli and actions appearing in between. The second task involves an action sequence which is itself extended in time and reward is only delivered at the last action, as it is the case in any type of board-game. The third task is the inspection game that has been studied in neuroeconomics, where an inspector tries to prevent a worker from shirking. Applying our algorithm to this game yields a learning behavior which is consistent with behavioral data from humans and monkeys, revealing themselves properties of a mixed Nash equilibrium. The examples show that our neuronal implementation of reward based learning copes with delayed and stochastic reward delivery, and also with the learning of mixed strategies in two-opponent games.
Resumo:
Learning by reinforcement is important in shaping animal behavior. But behavioral decision making is likely to involve the integration of many synaptic events in space and time. So in using a single reinforcement signal to modulate synaptic plasticity a twofold problem arises. Different synapses will have contributed differently to the behavioral decision and, even for one and the same synapse, releases at different times may have had different effects. Here we present a plasticity rule which solves this spatio-temporal credit assignment problem in a population of spiking neurons. The learning rule is spike time dependent and maximizes the expected reward by following its stochastic gradient. Synaptic plasticity is modulated not only by the reward but by a population feedback signal as well. While this additional signal solves the spatial component of the problem, the temporal one is solved by means of synaptic eligibility traces. In contrast to temporal difference based approaches to reinforcement learning, our rule is explicit with regard to the assumed biophysical mechanisms. Neurotransmitter concentrations determine plasticity and learning occurs fully online. Further, it works even if the task to be learned is non-Markovian, i.e. when reinforcement is not determined by the current state of the system but may also depend on past events. The performance of the model is assessed by studying three non-Markovian tasks. In the first task the reward is delayed beyond the last action with non-related stimuli and actions appearing in between. The second one involves an action sequence which is itself extended in time and reward is only delivered at the last action, as is the case in any type of board-game. The third is the inspection game that has been studied in neuroeconomics. It only has a mixed Nash equilibrium and exemplifies that the model also copes with stochastic reward delivery and the learning of mixed strategies.
Resumo:
Background The World Health Organization estimates that in sub-Saharan Africa about 4 million HIV-infected patients had started antiretroviral therapy (ART) by the end of 2008. Loss of patients to follow-up and care is an important problem for treatment programmes in this region. As mortality is high in these patients compared to patients remaining in care, ART programmes with high rates of loss to follow-up may substantially underestimate mortality of all patients starting ART. Methods and Findings We developed a nomogram to correct mortality estimates for loss to follow-up, based on the fact that mortality of all patients starting ART in a treatment programme is a weighted average of mortality among patients lost to follow-up and patients remaining in care. The nomogram gives a correction factor based on the percentage of patients lost to follow-up at a given point in time, and the estimated ratio of mortality between patients lost and not lost to follow-up. The mortality observed among patients retained in care is then multiplied by the correction factor to obtain an estimate of programme-level mortality that takes all deaths into account. A web calculator directly calculates the corrected, programme-level mortality with 95% confidence intervals (CIs). We applied the method to 11 ART programmes in sub-Saharan Africa. Patients retained in care had a mortality at 1 year of 1.4% to 12.0%; loss to follow-up ranged from 2.8% to 28.7%; and the correction factor from 1.2 to 8.0. The absolute difference between uncorrected and corrected mortality at 1 year ranged from 1.6% to 9.8%, and was above 5% in four programmes. The largest difference in mortality was in a programme with 28.7% of patients lost to follow-up at 1 year. Conclusions The amount of bias in mortality estimates can be large in ART programmes with substantial loss to follow-up. Programmes should routinely report mortality among patients retained in care and the proportion of patients lost. A simple nomogram can then be used to estimate mortality among all patients who started ART, for a range of plausible mortality rates among patients lost to follow-up.
Resumo:
This paper reports on a systematic review of qualitative research about vaginal practices in sub-Saharan Africa, which used meta-ethnographic methods to understand their origins, their meanings for the women who use them, and how they have evolved in time and place. We included published documents which were based on qualitative methods of data collection and analysis and contained information on vaginal practices. After screening, 16 texts were included which dated from 1951 to 2008. We found that practices evolve and adapt to present circumstances and that they remain an important source of power for women to negotiate challenges that they face. Recent evidence suggests that some practices may increase a woman's susceptibility to HIV and other sexually transmitted infections. The success of new female-controlled prevention technologies, such as microbicides, might be determined by whether they can and will be used by women in the course of their daily life.
Resumo:
During the past decade, extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae have become a matter of great concern in human medicine. ESBL-producing strains are found in the community, not just in hospital-associated patients, which raises a question about possible reservoirs. Recent studies describe the occurrence of ESBL-producing Enterobacteriaceae in meat, fish, and raw milk; therefore, the impact of food animals as reservoirs for and disseminators of such strains into the food production chain must be assessed. In this pilot study, fecal samples of 59 pigs and 64 cattle were investigated to determine the occurrence of ESBL-producing Enterobacteriaceae in farm animals at slaughter in Switzerland. Presumptive-positive colonies on Brilliance ESBL agar were subjected to identification and antibiotic susceptibility testing including the disc diffusion method and E-test ESBL strips. As many as 15.2% of the porcine and 17.1% of the bovine samples, predominantly from calves, yielded ESBL producers. Of the 21 isolated strains, 20 were Escherichia coli, and one was Citrobacter youngae. PCR analysis revealed that 18 strains including C. youngae produced CTX-M group 1 ESBLs, and three strains carried genes encoding for CTX-M group 9 enzymes. In addition, eight isolates were PCR positive for TEM beta-lactamase, but no bla(SHV) genes were detected. Pulsed-field gel electrophoresis showed a high genetic diversity within the strains. The relatively high rates of occurrence of ESBLproducing strains in food animals and the high genetic diversity among these strains indicate that there is an established reservoir of these organisms in farm animals. Further studies are necessary to assess future trends.
Resumo:
Humans and animals face decision tasks in an uncertain multi-agent environment where an agent's strategy may change in time due to the co-adaptation of others strategies. The neuronal substrate and the computational algorithms underlying such adaptive decision making, however, is largely unknown. We propose a population coding model of spiking neurons with a policy gradient procedure that successfully acquires optimal strategies for classical game-theoretical tasks. The suggested population reinforcement learning reproduces data from human behavioral experiments for the blackjack and the inspector game. It performs optimally according to a pure (deterministic) and mixed (stochastic) Nash equilibrium, respectively. In contrast, temporal-difference(TD)-learning, covariance-learning, and basic reinforcement learning fail to perform optimally for the stochastic strategy. Spike-based population reinforcement learning, shown to follow the stochastic reward gradient, is therefore a viable candidate to explain automated decision learning of a Nash equilibrium in two-player games.
Resumo:
OBJECTIVES: To test the efficacy of daptomycin, a cyclic lipopeptide antibiotic, against a methicillin-susceptible Staphylococcus aureus strain in experimental rabbit meningitis and to determine its penetration into non-inflamed and inflamed meninges RESULTS: Over a treatment period of 8 h, daptomycin (15 mg/kg) was significantly superior to the comparator regimen vancomycin (-4.54 +/- 1.12 log(10)/mL for daptomycin versus -3.43 +/- 1.17 log(10)/mL for vancomycin). Daptomycin managed to sterilize 6 out of 10 CSFs compared with 4 out of 10 for vancomycin. The penetration of daptomycin into inflamed meninges was approximately 5% and approximately 2% into non-inflamed meninges. CONCLUSIONS: The superior bactericidal activity of daptomycin was confirmed in vivo and in time-killing assays in vitro.
Resumo:
We present an overview of different methods for decomposing a multichannel spontaneous electroencephalogram (EEG) into sets of temporal patterns and topographic distributions. All of the methods presented here consider the scalp electric field as the basic analysis entity in space. In time, the resolution of the methods is between milliseconds (time-domain analysis), subseconds (time- and frequency-domain analysis) and seconds (frequency-domain analysis). For any of these methods, we show that large parts of the data can be explained by a small number of topographic distributions. Physically, this implies that the brain regions that generated one of those topographies must have been active with a common phase. If several brain regions are producing EEG signals at the same time and frequency, they have a strong tendency to do this in a synchronized mode. This view is illustrated by several examples (including combined EEG and functional magnetic resonance imaging (fMRI)) and a selective review of the literature. The findings are discussed in terms of short-lasting binding between different brain regions through synchronized oscillations, which could constitute a mechanism to form transient, functional neurocognitive networks.
Resumo:
In experimental rabbit meningitis, cefepime given at a dose of 100 mg/kg was associated with concentrations in the cerebrospinal fluid of between 5.3 and 10 mg/L and a bactericidal activity of -0.61 +/- 0.24 Delta log(10) cfu/mL x h, similar to the standard regimen of ceftriaxone combined with vancomycin (-0.58 +/- 0.14 Delta log(10) cfu/mL x h) in the treatment of meningitis due to a penicillin- and quinolone-resistant pneumococcal mutant strain (MIC 4 mg/L). Compared with the penicillin-resistant parental strain, the penicillin- and quinolone-resistant mutant was killed more slowly by cefepime and ceftriaxone in time-killing assays in vitro over 8 h.
Resumo:
In experimental meningitis a single dose of gentamicin (10 mg/kg of body weight) led to gentamicin levels in around cerebrospinal fluid (CSF) of 4 mg/liter for 4 h, decreasing slowly to 2 mg/liter 4 h later. The CSF penetration of gentamicin ranged around 27%, calculated by comparison of areas under the curve (AUC in serum/AUC in CSF). Gentamicin monotherapy (-1.24 log(10) CFU/ml) was inferior to vancomycin monotherapy (-2.54 log(10) CFU/ml) over 8 h against penicillin-resistant pneumococci. However, the combination of vancomycin with gentamicin was significantly superior (-4.48 log(10) CFU/ml) compared to either monotherapy alone. The synergistic activity of vancomycin combined with gentamicin was also demonstrated in vitro in time-kill assays.
Resumo:
Cefepime, a broad-spectrum, fourth-generation cephalosporin, showed excellent CSF penetration with levels ranging between 10 and 16 mg/L after two intravenous injections (100 mg/kg). The bactericidal activity of cefepime (-0.60 +/- 0.28 Deltalog(10) cfu/mL/h) was superior to that of ceftriaxone (-0.34 +/- 0.23 Deltalog(10) cfu/mL/h, P < 0.05) and vancomycin (-0.39 +/- 0.19 Deltalog(10) cfu/mL/h, P < 0.05) in the treatment of rabbits with meningitis caused by an isolate highly resistant to penicillin (MIC of penicillin G: 4 mg/L). The addition of vancomycin to both cephalosporins did not significantly increase the killing rate compared with monotherapies (P > 0.05). Similar results were obtained in time-killing experiments in vitro.
Resumo:
OBJECTIVE: Immediate and early loading of dental implants can simplify treatment and increase overall patient satisfaction. The purpose of this 3-year prospective randomized-controlled multicenter study was to assess the differences in survival rates and bone level changes between immediately and early-loaded implants with a new chemically modified surface (SLActive). This investigation shows interim results obtained after 5 months. MATERIAL AND METHODS: Patients > or =18 years of age missing at least one tooth in the posterior maxilla or mandible were enrolled in the study. Following implant placement, patients received a temporary restoration either on the day of surgery (immediate loading) or 28-34 days after surgery (early loading); restorations consisted of single crowns or two to four unit fixed dental prostheses. Permanent restorations were placed 20-23 weeks following surgery. The primary efficacy variable was change in bone level (assessed by standardized radiographs) from baseline to 5 months; secondary variables included implant survival and success rates. RESULTS: A total of 266 patients were enrolled (118 males and 148 females), and a total of 383 implants were placed (197 and 186 in the immediate and early loading groups, respectively). Mean patient age was 46.3+/-12.8 years. After 5 months, implant survival rates were 98% in the immediate group and 97% in the early group. Mean bone level change from baseline was 0.81+/-0.89 mm in the immediate group and 0.56+/-0.73 mm in the early group (P<0.05). Statistical analysis revealed a significant center effect (P<0.0001) and a significant treatment x center interaction (P=0.008). CONCLUSIONS: The results suggested that Straumann implants with an SLActive can be used predictably in time-critical (early or immediate) loading treatment protocols when appropriate patient selection criteria are observed. The mean bone level changes observed from baseline to 5 months (0.56 and 0.81 mm) corresponded to physiological observations from other studies, i.e., were not clinically significant. The presence of a significant center effect and treatment x center interaction indicated that the differences in bone level changes between the two groups were center dependent.
Resumo:
Selective dorsal rhizotomy at the lumbar level is a neurosurgical procedure, which reduces spasticity in the legs. Its effect has mainly been studied in children with spastic cerebral palsy. Little is known about the outcome of selective dorsal rhizotomy in patients with neurodegenerative disorders. We report the clinical course after selective dorsal rhizotomy in 2 patients with progressive spasticity. Leg spasticity was effectively and persistently reduced in both patients, facilitating care and improving sitting comfort. However, spasticity of the arms and other motor disturbances, such as spontaneous extension spasms and the ataxia, increased gradually in time. Selective dorsal rhizotomy leads to a disappearance of leg spasticity in patients with a neurodegenerative disease. Other motor signs are not influenced and may increase due to the progressive nature of the underlying disease.