17 resultados para Intractable Likelihood


Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE To investigate the likelihood of speaking up about patient safety in oncology and to clarify the effect of clinical and situational context factors on the likelihood of voicing concerns. PATIENTS AND METHODS 1013 nurses and doctors in oncology rated four clinical vignettes describing coworkers' errors and rule violations in a self-administered factorial survey (65% response rate). Multiple regression analysis was used to model the likelihood of speaking up as outcome of vignette attributes, responder's evaluations of the situation and personal characteristics. RESULTS Respondents reported a high likelihood of speaking up about patient safety but the variation between and within types of errors and rule violations was substantial. Staff without managerial function provided significantly higher levels of decision difficulty and discomfort to speak up. Based on the information presented in the vignettes, 74%-96% would speak up towards a supervisor failing to check a prescription, 45%-81% would point a coworker to a missed hand disinfection, 82%-94% would speak up towards nurses who violate a safety rule in medication preparation, and 59%-92% would question a doctor violating a safety rule in lumbar puncture. Several vignette attributes predicted the likelihood of speaking up. Perceived potential harm, anticipated discomfort, and decision difficulty were significant predictors of the likelihood of speaking up. CONCLUSIONS Clinicians' willingness to speak up about patient safety is considerably affected by contextual factors. Physicians and nurses without managerial function report substantial discomfort with speaking up. Oncology departments should provide staff with clear guidance and trainings on when and how to voice safety concerns.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Attractive business cases in various application fields contribute to the sustained long-term interest in indoor localization and tracking by the research community. Location tracking is generally treated as a dynamic state estimation problem, consisting of two steps: (i) location estimation through measurement, and (ii) location prediction. For the estimation step, one of the most efficient and low-cost solutions is Received Signal Strength (RSS)-based ranging. However, various challenges - unrealistic propagation model, non-line of sight (NLOS), and multipath propagation - are yet to be addressed. Particle filters are a popular choice for dealing with the inherent non-linearities in both location measurements and motion dynamics. While such filters have been successfully applied to accurate, time-based ranging measurements, dealing with the more error-prone RSS based ranging is still challenging. In this work, we address the above issues with a novel, weighted likelihood, bootstrap particle filter for tracking via RSS-based ranging. Our filter weights the individual likelihoods from different anchor nodes exponentially, according to the ranging estimation. We also employ an improved propagation model for more accurate RSS-based ranging, which we suggested in recent work. We implemented and tested our algorithm in a passive localization system with IEEE 802.15.4 signals, showing that our proposed solution largely outperforms a traditional bootstrap particle filter.