42 resultados para Internal relationship models
Resumo:
Yardsticks have been developed to measure dental arch relations in cleft lip and palate (CLP) patients as diagnostic proxies for the underlying skeletal relationship. Travelling with plaster casts to compare results between CLP centres is inefficient so the aim of this study was to investigate the reliability of using digital models or photographs of dental casts instead of plaster casts for rating dental arch relationships in children with complete bilateral cleft lip and palate (CBCLP). Dental casts of children with CBCLP (n=20) were included. Plaster casts, digital models and photographs of the plaster casts were available for all the children at 6, 9, and 12 years of age. All three record formats were scored using the bilateral cleft lip and palate (BCLP) yardstick by four observers in random order. No significant differences were found for the BCLP yardstick scores among the three formats. The interobserver weighted kappa scores were between 0.672 and 0.934. Comparison between the formats per observer resulted in weighted kappa scores between 0.692 and 0.885. It is concluded that digital models and photographs of dental casts can be used for rating dental arch relationships in patients with CBCLP. These formats are a reliable alternative for BCLP yardstick assessments on conventional plaster casts.
Resumo:
Various pharmacodynamic response surface models have been developed to quantitatively describe the relationship between two or more drug concentrations with their combined clinical effect. We examined the interaction of remifentanil and sevoflurane on the probability of tolerance to shake and shout, tetanic stimulation, laryngeal mask airway insertion, and laryngoscopy in patients to compare the performance of five different response surface models.
Resumo:
Fossils of chironomid larvae (non-biting midges) preserved in lake sediments are well-established palaeotemperature indicators which, with the aid of numerical chironomid-based inference models (transfer functions), can provide quantitative estimates of past temperature change. This approach to temperature reconstruction relies on the strong relationship between air and lake surface water temperature and the distribution of individual chironomid taxa (species, species groups, genera) that has been observed in different climate regions (arctic, subarctic, temperate and tropical) in both the Northern and Southern hemisphere. A major complicating factor for the use of chironomids for palaeoclimate reconstruction which increases the uncertainty associated with chironomid-based temperature estimates is that the exact nature of the mechanism responsible for the strong relationship between temperature and chironomid assemblages in lakes remains uncertain. While a number of authors have provided state of the art overviews of fossil chironomid palaeoecology and the use of chironomids for temperature reconstruction, few have focused on examining the ecological basis for this approach. Here, we review the nature of the relationship between chironomids and temperature based on the available ecological evidence. After discussing many of the surveys describing the distribution of chironomid taxa in lake surface sediments in relation to temperature, we also examine evidence from laboratory and field studies exploring the effects of temperature on chironomid physiology, life cycles and behaviour. We show that, even though a direct influence of water temperature on chironomid development, growth and survival is well described, chironomid palaeoclimatology is presently faced with the paradoxical situation that the relationship between chironomid distribution and temperature seems strongest in relatively deep, thermally stratified lakes in temperate and subarctic regions in which the benthic chironomid fauna lives largely decoupled from the direct influence of air and surface water temperature. This finding suggests that indirect effects of temperature on physical and chemical characteristics of lakes play an important role in determining the distribution of lake-living chironomid larvae. However, we also demonstrate that no single indirect mechanism has been identified that can explain the strong relationship between chironomid distribution and temperature in all regions and datasets presently available. This observation contrasts with the previously published hypothesis that climatic effects on lake nutrient status and productivity may be largely responsible for the apparent correlation between chironomid assemblage distribution and temperature. We conclude our review by summarizing the implications of our findings for chironomid-based palaeoclimatology and by pointing towards further avenues of research necessary to improve our mechanistic understanding of the chironomid-temperature relationship.
Resumo:
Neospora caninum is an apicomplexan parasite that is closely related to Toxoplasma gondii, the causative agent of toxoplasmosis in humans and domestic animals. However, in contrast to T. gondii, N. caninum represents a major cause of abortion in cattle, pointing towards distinct differences in the biology of these two species. There are 3 distinct key features that represent potential targets for prevention of infection or intervention against disease caused by N. caninum. Firstly, tachyzoites are capable of infecting a large variety of host cells in vitro and in vivo. Secondly, the parasite exploits its ability to respond to alterations in living conditions by converting into another stage (tachyzoite-to-bradyzoite or vice versa). Thirdly, by analogy with T. gondii, this parasite has evolved mechanisms that modulate its host cells according to its own requirements, and these must, especially in the case of the bradyzoite stage, involve mechanisms that ensure long-term survival of not only the parasite but also of the host cell. In order to elucidate the molecular and cellular bases of these important features of N. caninum, cell culture-based approaches and laboratory animal models are being exploited. In this review, we will summarize the current achievements related to host cell and parasite cell biology, and will discuss potential applications for prevention of infection and/or disease by reviewing corresponding work performed in murine laboratory infection models and in cattle.
Resumo:
OBJECT: Disturbed ionic and neurotransmitter homeostasis are now recognized as probably the most important mechanisms contributing to the development of secondary brain swelling after traumatic brain injury (TBI). Evidence obtained in animal models indicates that posttraumatic neuronal excitation by excitatory amino acids leads to an increase in extracellular potassium, probably due to ion channel activation. The purpose of this study was therefore to measure dialysate potassium in severely head injured patients and to correlate these results with measurements of intracranial pressure (ICP), patient outcome, and levels of dialysate glutamate and lactate, and cerebral blood flow (CBF) to determine the role of ischemia in this posttraumatic ion dysfunction. METHODS: Eighty-five patients with severe TBI (Glasgow Coma Scale Score < 8) were treated according to an intensive ICP management-focused protocol. All patients underwent intracerebral microdialyis. Dialysate potassium levels were analyzed using flame photometry, and dialysate glutamate and dialysate lactate levels were measured using high-performance liquid chromatography and an enzyme-linked amperometric method in 72 and 84 patients, respectively. Cerebral blood flow studies (stable xenon computerized tomography scanning) were performed in 59 patients. In approximately 20% of the patients, dialysate potassium values were increased (dialysate potassium > 1.8 mM) for 3 hours or more. A mean amount of dialysate potassium greater than 2 mM throughout the entire monitoring period was associated with ICP above 30 mm Hg and fatal outcome, as were progressively rising levels of dialysate potassium. The presence of dialysate potassium correlated positively with dialysate glutamate (p < 0.0001) and lactate (p < 0.0001) levels. Dialysate potassium was significantly inversely correlated with reduced CBF (p = 0.019). CONCLUSIONS: Dialysate potassium was increased after TBI in 20% of measurements. High levels of dialysate potassium were associated with increased ICP and poor outcome. The simultaneous increase in dialysate potassium, together with dialysate glutamate and lactate, supports the concept that glutamate induces ionic flux and consequently increases ICP, which the authors speculate may be due to astrocytic swelling. Reduced CBF was also significantly correlated with increased levels of dialysate potassium. This may be due to either cell swelling or altered vasoreactivity in cerebral blood vessels caused by higher levels of potassium after trauma. Additional studies in which potassium-sensitive microelectrodes are used are needed to validate these ionic events more clearly.
Resumo:
Disturbed ionic and neurotransmitter homeostasis are now recognized to be probably the most important mechanisms contributing to the development of secondary brain swelling after traumatic brian injury (TBI). Evidence obtained from animal models indicates that posttraumatic neuronal excitation via excitatory amino acids leads to an increase in extracellular potassium, probably due to ion channel activation. The purpose of this study was therefore to measure dialysate potassium in severely head injured patients and to correlate these results with intracranial pressure (ICP), outcome, and also with the levels of dialysate glutamate, lactate, and cerebral blood flow (CBF) so as to determine the role of ischemia in this posttraumatic ionic dysfunction. Eighty-five patients with severe TBI (Glasgow Coma Scale score < 8) were treated according to an intensive ICP management-focused protocol. All patients underwent intracerebral microdialyis. Dialysate potassium levels were analyzed by flame photometry, as were dialysate glutamate and dialysate lactate levels, which were measured using high-performance liquid chromatography and an enzyme-linked amperometric method in 72 and 84 patients respectively. Cerebral blood flow studies (stable Xenon--computerized tomography scanning) were performed in 59 patients. In approximately 20% of the patients, potassium values were increased (dialysate potassium > 1.8 mmol). Mean dialysate potassium (> 2 mmol) was associated with ICP above 30 mm Hg and fatal outcome. Dialysate potassium correlated positively with dialysate glutamate (p < 0.0001) and lactate levels (p < 0.0001). Dialysate potassium was significantly inversely correlated with reduced CBF (p = 0.019). Dialysate potassium was increased after TBI in 20% of measurements. High levels of dialysate potassium were associated with increased ICP and poor outcome. The simultaneous increase of potassium, together with dialysate glutamate and lactate, supports the hypothesis that glutamate induces ionic flux and consequently increases ICP due to astrocytic swelling. Reduced CBF was also significantly correlated with increased levels of dialysate potassium. This may be due to either cell swelling or altered potassium reactivity in cerebral blood vessels after trauma.
Resumo:
Fully coupled climate carbon cycle models are sophisticated tools that are used to predict future climate change and its impact on the land and ocean carbon cycles. These models should be able to adequately represent natural variability, requiring model validation by observations. The present study focuses on the ocean carbon cycle component, in particular the spatial and temporal variability in net primary productivity (PP) and export production (EP) of particulate organic carbon (POC). Results from three coupled climate carbon cycle models (IPSL, MPIM, NCAR) are compared with observation-based estimates derived from satellite measurements of ocean colour and results from inverse modelling (data assimilation). Satellite observations of ocean colour have shown that temporal variability of PP on the global scale is largely dominated by the permanently stratified, low-latitude ocean (Behrenfeld et al., 2006) with stronger stratification (higher sea surface temperature; SST) being associated with negative PP anomalies. Results from all three coupled models confirm the role of the low-latitude, permanently stratified ocean for anomalies in globally integrated PP, but only one model (IPSL) also reproduces the inverse relationship between stratification (SST) and PP. An adequate representation of iron and macronutrient co-limitation of phytoplankton growth in the tropical ocean has shown to be the crucial mechanism determining the capability of the models to reproduce observed interactions between climate and PP.
Resumo:
Context. Planet formation models have been developed during the past years to try to reproduce what has been observed of both the solar system and the extrasolar planets. Some of these models have partially succeeded, but they focus on massive planets and, for the sake of simplicity, exclude planets belonging to planetary systems. However, more and more planets are now found in planetary systems. This tendency, which is a result of radial velocity, transit, and direct imaging surveys, seems to be even more pronounced for low-mass planets. These new observations require improving planet formation models, including new physics, and considering the formation of systems. Aims: In a recent series of papers, we have presented some improvements in the physics of our models, focussing in particular on the internal structure of forming planets, and on the computation of the excitation state of planetesimals and their resulting accretion rate. In this paper, we focus on the concurrent effect of the formation of more than one planet in the same protoplanetary disc and show the effect, in terms of architecture and composition of this multiplicity. Methods: We used an N-body calculation including collision detection to compute the orbital evolution of a planetary system. Moreover, we describe the effect of competition for accretion of gas and solids, as well as the effect of gravitational interactions between planets. Results: We show that the masses and semi-major axes of planets are modified by both the effect of competition and gravitational interactions. We also present the effect of the assumed number of forming planets in the same system (a free parameter of the model), as well as the effect of the inclination and eccentricity damping. We find that the fraction of ejected planets increases from nearly 0 to 8% as we change the number of embryos we seed the system with from 2 to 20 planetary embryos. Moreover, our calculations show that, when considering planets more massive than ~5 M⊕, simulations with 10 or 20 planetary embryos statistically give the same results in terms of mass function and period distribution.
Resumo:
Objective: There is an ongoing debate concerning how outcome variables change during the course of psychotherapy. We compared the dose–effect model, which posits diminishing effects of additional sessions in later treatment phases, against a model that assumes a linear and steady treatment progress through termination. Method: Session-by-session outcome data of 6,375 outpatients were analyzed, and participants were categorized according to treatment length. Linear and log-linear (i.e., negatively accelerating) latent growth curve models (LGCMs) were estimated and compared for different treatment length categories. Results: When comparing the fit of the various models, the log-linear LGCMs assuming negatively accelerating treatment progress consistently outperformed the linear models irre- spective of treatment duration. The rate of change was found to be inversely related to the length of treatment. Conclusion: As proposed by the dose–effect model, the expected course of improvement in psychotherapy appears to follow a negatively accelerated pattern of change, irrespective of the duration of the treatment. However, our results also suggest that the rate of change is not constant across various treatment lengths. As proposed by the “good enough level” model, longer treatments are associated with less rapid rates of change.
Resumo:
BACKGROUND The quality and quantity of social relationships are associated with depression but there is less evidence regarding which aspects of social relationship are most predictive. We evaluated the relative magnitude and independence of the association of four social relationship domains with major depressive disorder and depressive symptoms. METHODS We analyzed a cross-sectional telephone interview and postal survey of a probability sample of adults living in Switzerland (N = 12,286). Twelve-month major depressive disorder was assessed via structured interview over the telephone using the Composite International Diagnostic Interview (CIDI). The postal survey assessed depressive symptoms as well as variables representing emotional support, tangible support, social integration, and loneliness. RESULTS Each individual social relationship domain was associated with both outcome measures, but in multivariate models being lonely and perceiving unmet emotional support had the largest and most consistent associations across depression outcomes (incidence rate ratios ranging from 1.55-9.97 for loneliness and from 1.23-1.40 for unmet support, p's < 0.05). All social relationship domains except marital status were independently associated with depressive symptoms whereas only loneliness and unmet support were associated with depressive disorder. CONCLUSIONS Perceived quality and frequency of social relationships are associated with clinical depression and depressive symptoms across a wide adult age spectrum. This study extends prior work linking loneliness to depression by showing that a broad range of social relationship domains are associated with psychological well-being.
Resumo:
Objectives: The purpose of this meta analysis was to examine the moderating impact of substance use disorder as inclusion/exclusion criterion as well as the percentage of racial/ethnic minorities on the strength of the alliance-outcome relationship in psychotherapy. It was hypothesized that the presence of a dsm axis i substance use disorders as a criterion and the presence of racial/ethnic minority as a psychosocial indicator are confounded client factors reducing the relationship between alliance and outcome. Methods: A random effects restricted maximum-likelihood estimator was used for omnibus and moderator models (k = 94). results: the presence of (a) substance use disorder and, (b) racial/ethnic minorities (overall and specific to african americans) partially moderated the alliance-outcome correlation. The percentage of substance use disorders and racial/ethnic minority status was highly correlated. Conclusions: Socio-cultural contextual variables should be considered along with dsm axis i diagnosis of substance use disorders in analyzing and interpreting mechanisms of change.
Resumo:
PURPOSE Resternotomy for aortic valve replacement in patients with previous coronary artery bypass grafting and an internal mammary artery graft may be a surgical problem. Thus, we are exploring the effect of using rapid prototyping techniques for surgical planning and intraoperative orientation during aortic valve replacement after previous coronary artery bypass grafting (CABG). DESCRIPTION As a proof of concept, we studied a patient who had undergone CABG 5 years earlier. At that time the patient received a left internal mammary artery graft to the left anterior descending artery and a venous graft to the right coronary artery. Now the patient required aortic valve replacement due to symptomatic aortic valve stenosis. The left internal mammary artery bypass and the right coronary artery bypass were patent and showed good flow in the angiography. The patient was examined by 128-slice computed tomography. The image data were visualized and reconstructed. Afterwards, a replica showing the anatomic structures was fabricated using a rapid prototyping machine. EVALUATION Using data derived from 128-slice computed tomography angiography linked to proprietary software, we were able to create three-dimensional reconstructions of the vascular anatomy after the previous CABG. The models were sterilized and taken to the operating theatre for orientation during the surgical procedure. CONCLUSIONS Stereolithographic replicas are helpful for choosing treatment strategies in surgical planning and for intraoperative orientation during reoperations of patients with previous CABG.
Resumo:
The maintenance of genetic variation in a spatially heterogeneous environment has been one of the main research themes in theoretical population genetics. Despite considerable progress in understanding the consequences of spatially structured environments on genetic variation, many problems remain unsolved. One of them concerns the relationship between the number of demes, the degree of dominance, and the maximum number of alleles that can be maintained by selection in a subdivided population. In this work, we study the potential of maintaining genetic variation in a two-deme model with deme-independent degree of intermediate dominance, which includes absence of G x E interaction as a special case. We present a thorough numerical analysis of a two-deme three-allele model, which allows us to identify dominance and selection patterns that harbor the potential for stable triallelic equilibria. The information gained by this approach is then used to construct an example in which existence and asymptotic stability of a fully polymorphic equilibrium can be proved analytically. Noteworthy, in this example the parameter range in which three alleles can coexist is maximized for intermediate migration rates. Our results can be interpreted in a specialist-generalist context and (among others) show when two specialists can coexist with a generalist in two demes if the degree of dominance is deme independent and intermediate. The dominance relation between the generalist allele and the specialist alleles play a decisive role. We also discuss linear selection on a quantitative trait and show that G x E interaction is not necessary for the maintenance of more than two alleles in two demes.
Resumo:
The main purpose of this paper is to explore health control beliefs (internality, powerful others, chance) in different age cohorts of elderly people and to examine the relationship between health control beliefs and objective and subjective health, and health behaviour. This contribution shows data from an interdisciplinary longitudinal ageing study: (a) a descriptive analysis of age- and time-correlated changes in health control beliefs of different cohorts of elderly people by taking into account gender as a differential aspect; (b) group comparisons between objectively and subjectively healthy or sick people and their health control beliefs and health relevant behaviour. Participants are 442 community elderly, 309 men, 133 women, aged 65± 94 years (mean age: 74.95 years). Our data demonstrate the dominance of chance control beliefs over internality and powerful others in all age cohorts. It can be concluded that internal control remains stable well into old age, whereas a signi® cant age-correlated increase of externality can be observed. Our results show the signi® cant relationship of subjective health self-evaluations with health control beliefs and health behaviour which is not the case for objective health parameters. Strong gender effects are found for internality and social externality: women have signi® cantly lower internality and powerful others scores than men.
Resumo:
We present a comprehensive analytical study of radiative transfer using the method of moments and include the effects of non-isotropic scattering in the coherent limit. Within this unified formalism, we derive the governing equations and solutions describing two-stream radiative transfer (which approximates the passage of radiation as a pair of outgoing and incoming fluxes), flux-limited diffusion (which describes radiative transfer in the deep interior) and solutions for the temperature-pressure profiles. Generally, the problem is mathematically under-determined unless a set of closures (Eddington coefficients) is specified. We demonstrate that the hemispheric (or hemi-isotropic) closure naturally derives from the radiative transfer equation if energy conservation is obeyed, while the Eddington closure produces spurious enhancements of both reflected light and thermal emission. We concoct recipes for implementing two-stream radiative transfer in stand-alone numerical calculations and general circulation models. We use our two-stream solutions to construct toy models of the runaway greenhouse effect. We present a new solution for temperature-pressure profiles with a non-constant optical opacity and elucidate the effects of non-isotropic scattering in the optical and infrared. We derive generalized expressions for the spherical and Bond albedos and the photon deposition depth. We demonstrate that the value of the optical depth corresponding to the photosphere is not always 2/3 (Milne's solution) and depends on a combination of stellar irradiation, internal heat and the properties of scattering both in optical and infrared. Finally, we derive generalized expressions for the total, net, outgoing and incoming fluxes in the convective regime.