36 resultados para Interleukin 8
Resumo:
Polymorphonuclear neutrophils release ATP in response to stimulation by chemoattractants, such as the peptide N-formyl-methionyl-leucyl-phenylalanine. Released ATP and the hydrolytic product adenosine regulate chemotaxis of neutrophils by sequentially activating purinergic nucleotide and adenosine receptors, respectively. Here we show that that ecto-nucleoside triphosphate diphosphohydrolase 1 (E-NTPDase1, CD39) is a critical enzyme for hydrolysis of released ATP by neutrophils and for cell migration in response to multiple agonists (N-formyl-methionyl-leucyl-phenylalanine, interleukin-8, and C5a). Upon stimulation of human neutrophils or differentiated HL-60 cells in a chemotactic gradient, E-NTPDase1 tightly associates with the leading edge of polarized cells during chemotaxis. Inhibition of E-NTPDase1 reduces the migration speed of neutrophils but not their ability to detect the orientation of the gradient field. Studies of neutrophils from E-NTPDase1 knock-out mice reveal similar impairments of chemotaxis in vitro and in vivo. Thus, E-NTPDase1 plays an important role in regulating neutrophil chemotaxis by facilitating the hydrolysis of extracellular ATP.
Resumo:
ABSTRACT: BACKGROUND: Fine particulate matter originating from traffic correlates with increased morbidity and mortality. An important source of traffic particles is brake wear of cars which contributes up to 20% of the total traffic emissions. The aim of this study was to evaluate potential toxicological effects of human epithelial lung cells exposed to freshly generated brake wear particles. RESULTS: An exposure box was mounted around a car's braking system. Lung cells cultured at the air-liquid interface were then exposed to particles emitted from two typical braking behaviours ("full stop" and "normal deceleration"). The particle size distribution as well as the brake emission components like metals and carbons was measured on-line, and the particles deposited on grids for transmission electron microscopy were counted. The tight junction arrangement was observed by laser scanning microscopy. Cellular responses were assessed by measurement of lactate dehydrogenase (cytotoxicity), by investigating the production of reactive oxidative species and the release of the pro-inflammatory mediator interleukin-8. The tight junction protein occludin density decreased significantly (p < 0.05) with increasing concentrations of metals on the particles (iron, copper and manganese, which were all strongly correlated with each other). Occludin was also negatively correlated with the intensity of reactive oxidative species. The concentrations of interleukin-8 were significantly correlated with increasing organic carbon concentrations. No correlation was observed between occludin and interleukin-8, nor between reactive oxidative species and interleukin-8. CONCLUSION: These findings suggest that the metals on brake wear particles damage tight junctions with a mechanism involving oxidative stress. Brake wear particles also increase pro-inflammatory responses. However, this might be due to another mechanism than via oxidative stress.
Resumo:
Endometriosis affects 10-20% of women during reproductive age and is a common cause of infertility and pain leading to work absenteeism and reduced quality of life.The objective of this study was to investigate the association between the presence and concentration of interleukin-8 (IL-8), RANTES, osteoprotegerin (OPG), pregnancy-associated plasma protein A (PAPP-A), tumour necrosis factor-alpha (TNF-alpha), midkine and glycodelin in the peritoneal fluid (PF) and the intensity of pain reported by patients undergoing laparoscopy in our clinic. They rated their pain during menstruation, intercourse and lower abdominal using a visual analogue scale. During laparoscopy, PF was aspirated. Pain scores were correlated to the concentration of the above substances in the PF and to the stage of endometriosis. Endometriosis was histologically confirmed in 41 of 68 participating women; 27 without such evidence were considered as controls. TNF-alpha and glycodelin correlated positively with the level of menstrual pain. For IL-8, RANTES, OPG and PAPP-A no correlation between their PF concentration and the menstrual pain scores was observed. Patients with severe dysmenorrhoea had increased PF cytokine and marker levels; the difference was significant for TNF-alpha and glycodelin when compared with the other patients (no or moderate pain). TNF-alpha and glycodelin may thus play a role in endometriosis and the severity of menstrual pain.
Resumo:
OBJECTIVE: To determine if neurally adjusted ventilatory assist (NAVA) that delivers pressure in proportion to diaphragm electrical activity is as protective to acutely injured lungs (ALI) and non-pulmonary organs as volume controlled (VC), low tidal volume (Vt), high positive end-expiratory pressure (PEEP) ventilation. DESIGN: Prospective, randomized, laboratory animal study. SUBJECTS: Twenty-seven male New Zealand white rabbits. INTERVENTIONS: Anesthetized rabbits with hydrochloric acid-induced ALI were randomized (n = 9 per group) to 5.5 h NAVA (non-paralyzed), VC (paralyzed; Vt 6-ml/kg), or VC (paralyzed; Vt 15-ml/kg). PEEP was adjusted to hemodynamic goals in NAVA and VC6-ml/kg, and was 1 cmH2O in VC15-ml/kg. MEASUREMENTS AND MAIN RESULTS: PaO2/FiO2; lung wet-to-dry ratio; lung histology; interleukin-8 (IL-8) concentrations in broncho-alveolar-lavage (BAL) fluid, plasma, and non-pulmonary organs; plasminogen activator inhibitor type-1 and tissue factor in BAL fluid and plasma; non-pulmonary organ apoptosis rate; creatinine clearance; echocardiography. PEEP was similar in NAVA and VC6-ml/kg. During NAVA, Vt was lower (3.1 +/- 0.9 ml/kg), whereas PaO2/ FiO2, respiratory rate, and PaCO2 were higher compared to VC6-ml/kg (p<0.05 for all). Variables assessing ventilator-induced lung injury (VILI), IL-8 levels, non-pulmonary organ apoptosis rate, and kidney as well as cardiac performance were similar in NAVA compared to VC6-ml/kg. VILI and non-pulmonary organ dysfunction was attenuated in both groups compared to VC15-ml/kg. CONCLUSIONS: In anesthetized rabbits with early experimental ALI, NAVA is as effective as VC6-ml/kg in preventing VILI, in attenuating excessive systemic and remote organ inflammation, and in preserving cardiac and kidney function.
Resumo:
We conducted genetic and functional analyses of isolates from a patient with group B streptococcal (GBS) necrotizing fasciitis and toxic shock syndrome. Tissue cultures simultaneously showed colonies with high hemolysis (HH) and low hemolysis (LH). Conversely, the HH and LH variants exhibited low capsule (LC) and high capsule (HC) expression, respectively. Molecular analysis demonstrated that the 2 GBS variants were of the same clonal origin. Genetic analysis found a 3-bp deletion in the covR gene of the HH/LC variant. Functionally, this isolate was associated with an increased growth rate in vitro and with higher interleukin-8 induction. However, in whole blood, opsonophagocytic and intracellular killing assays, the LH/HC phenotype demonstrated higher resistance to host phagocytic killing. In a murine model, LH/HC resulted in higher levels of bacteremia and increased host mortality rate. These findings demonstrate differences in GBS isolates of the same clonal origin but varying phenotypes.
Resumo:
Cathepsin D (Cath-D) expression in human primary breast cancer has been associated with a poor prognosis. In search of a better understanding of the Cath-D substrates possibly involved in cancer invasiveness and metastasis, we investigated the potential interactions between this protease and chemokines. Here we report that purified Cath-D, as well as culture supernatants from the human breast carcinoma cell lines MCF-7 and T47D, selectively degrade macrophage inflammatory protein (MIP)-1 alpha (CCL3), MIP-1 beta (CCL4), and SLC (CCL21). Proteolysis was totally blocked by the protease inhibitor pepstatin A, and specificity of Cath-D cleavage was demonstrated using a large chemokine panel. Whereas MIP-1 alpha and MIP-1 beta degradation was rapid and complete, cleavage of SLC was slow and not complete. Mass spectrometry analysis showed that Cath-D cleaves the Leu(58) to Trp(59) bond of SLC producing two functionally inactive fragments. Analysis of Cath-D proteolysis of a series of monocyte chemoattractant protein-3/MIP-1 beta hybrids indicated that processing of MIP-1 beta might start by cleaving off amino acids located in the C-terminal domain. In situ hybridization studies revealed MIP-1 alpha, MIP-1 beta, and Cath-D gene expression mainly in the stromal compartment of breast cancers whereas SLC transcripts were found in endothelial cells of capillaries and venules within the neoplastic tissues. Cath-D production in the breast carcinoma cell lines MCF-7 and T47D, as assessed by enzyme-linked immunosorbent assay of culture supernatants and cell lysates, was not affected by stimulation with chemokines such as interleukin-8 (CXCL8), SDF-1 (CXCL12), and SLC. These data suggest that inactivation of chemokines by Cath-D possibly influences regulatory mechanisms in the tumoral extracellular microenvironment that in turn may affect the generation of the antitumoral immune response, the migration of cancer cells, or both processes.
Resumo:
BACKGROUND Curcumin (CUR) is a dietary spice and food colorant (E100). Its potent anti-inflammatory activity by inhibiting the activation of Nuclear Factor-kappaB is well established. METHODS The aim of this study was to compare natural purified CUR (nCUR) with synthetically manufactured CUR (sCUR) with respect to their capacity to inhibit detrimental effects in an in vitro model of oral mucositis. The hypothesis was to demonstrate bioequivalence of nCUR and sCUR. RESULTS The purity of sCUR was HPLC-confirmed. Adherence and invasion assays for bacteria to human pharyngeal epithelial cells demonstrated equivalence of nCUR and sCUR. Standard assays also demonstrated an identical inhibitory effect on pro-inflammatory cytokine/chemokine secretion (e.g., interleukin-8, interleukin-6) by Detroit pharyngeal cells exposed to bacterial stimuli. There was bioequivalence of sCUR and nCUR with respect to their antibacterial effects against various pharyngeal species. CONCLUSION nCUR and sCUR are equipotent in in vitro assays mimicking aspects of oral mucositis. The advantages of sCUR include that it is odorless and tasteless, more easily soluble in DMSO, and that it is a single, highly purified molecule, lacking the batch-to-batch variation of CUR content in nCUR. sCUR is a promising agent for the development of an oral anti-mucositis agent.
Resumo:
Objectives.This study aimed to further elucidate the biobehavioral mechanisms linking dementia caregiving with an increased cardiovascular disease risk. We hypothesized that both elevated depressive symptoms and a behavioral correlate of depression, low leisure satisfaction, are associated with systemic inflammation.Method.We studied 121 elderly Alzheimer's disease caregivers who underwent 4 annual assessments for depressive symptoms, leisure satisfaction, and circulating levels of inflammatory markers. We used mixed-regression analyses controlling for sociodemographic and health-relevant covariates to examine longitudinal relationships between constructs of interest. RESULTS: There were inverse relationships between total leisure satisfaction and tumor necrosis factor-α (TNF-α; p = .047), interleukin-8 (IL-8; p < .001), and interferon-γ (IFG; p = .020) but not with IL-6 (p = .21) and C-reactive protein (p = .65). Lower enjoyment from leisure activities was related to higher levels of TNF-α (p = .045), IL-8 (p < .001), and IFG (p = .002), whereas lower frequency of leisure activities was related only to higher IL-8 levels (p = .023). Depressive symptoms were not associated with any inflammatory marker (all p values > .17). Depressive symptoms did not mediate the relationship between leisure satisfaction and inflammation.Discussion.Lower satisfaction with leisure activities is related to higher low-grade systemic inflammation. This knowledge may provide a promising way of improving cardiovascular health in dementia caregivers through behavioral activation treatments targeting low leisure satisfaction.
Resumo:
BACKGROUND CONTEXT In canine intervertebral disc (IVD) disease, a useful animal model, only little is known about the inflammatory response in the epidural space. PURPOSE To determine messenger RNA (mRNA) expressions of selected cytokines, chemokines, and matrix metalloproteinases (MMPs) qualitatively and semiquantitatively over the course of the disease and to correlate results to neurologic status and outcome. STUDY DESIGN/SETTING Prospective study using extruded IVD material of dogs with thoracolumbar IVD extrusion. PATIENT SAMPLE Seventy affected and 13 control (24 samples) dogs. OUTCOME MEASURES Duration of neurologic signs, pretreatment, neurologic grade, severity of pain, and outcome were recorded. After diagnostic imaging, decompressive surgery was performed. METHODS Messenger RNA expressions of interleukin (IL)-1β, IL-2, IL-4, IL-6, IL-8, IL-10, tumor necrosis factor (TNF), interferon (IFN)γ, MMP-2, MMP-9, chemokine ligand (CCL)2, CCL3, and three housekeeping genes was determined in the collected epidural material by Panomics 2.0 QuantiGene Plex technology. Relative mRNA expression and fold changes were calculated. Relative mRNA expression was correlated statistically to clinical parameters. RESULTS Fold changes of TNF, IL-1β, IL-2, IL-4, IL-6, IL-10, IFNγ, and CCL3 were clearly downregulated in all stages of the disease. MMP-9 was downregulated in the acute stage and upregulated in the subacute and chronic phase. Interleukin-8 was upregulated in acute cases. MMP-2 showed mild and CCL2 strong upregulation over the whole course of the disease. In dogs with severe pain, CCL3 and IFNγ were significantly higher compared with dogs without pain (p=.017/.020). Dogs pretreated with nonsteroidal anti-inflammatory drugs revealed significantly lower mRNA expression of IL-8 (p=.017). CONCLUSIONS The high CCL2 levels and upregulated MMPs combined with downregulated T-cell cytokines and suppressed pro-inflammatory genes in extruded canine disc material indicate that the epidural reaction is dominated by infiltrating monocytes differentiating into macrophages with tissue remodeling functions. These results will help to understand the pathogenic processes representing the basis for novel therapeutic approaches. The canine IVD disease model will be rewarding in this process.
Resumo:
BACKGROUND Vascular Ehlers-Danlos syndrome (VEDS) causes reduced life expectancy because of arterial dissections/rupture and hollow organ rupture. Although the causative gene, COL3A1, was identified >20 years ago, there has been limited progress in understanding the disease mechanisms or identifying treatments. METHODS AND RESULTS We studied inflammatory and transforming growth factor-β (TGF-β) signaling biomarkers in plasma and from dermal fibroblasts from patients with VEDS. Analyses were done in terms of clinical disease severity, genotype-phenotype correlations, and body composition and fat deposition alterations. VEDS subjects had increased circulating TGF-β1, TGF-β2, monocyte chemotactic protein-1, C-reactive protein, intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and leptin and decreased interleukin-8 versus controls. VEDS dermal fibroblasts secreted more TGF-β2, whereas downstream canonical/noncanonical TGF-β signaling was not different. Patients with COL3A1 exon skipping mutations had higher plasma intercellular adhesion molecule-1 and vascular cell adhesion molecule-1, and VEDS probands had abnormally high plasma C-reactive protein versus affected patients identified through family members before any disease manifestations. Patients with VEDS had higher mean platelet volumes, suggesting increased platelet turnover because of ongoing vascular damage, as well as increased regional truncal adiposity. CONCLUSIONS These findings suggest that VEDS is a systemic disease with a major inflammatory component. C-reactive protein is linked to disease state and may be a disease activity marker. No changes in downstream TGF-β signaling and increased platelet turnover suggest that chronic vascular damage may partially explain increased plasma TGF-β1. Finally, we found a novel role for dysregulated TGF-β2, as well as adipocyte dysfunction, as demonstrated through reduced interleukin-8 and elevated leptin in VEDS.
Resumo:
BACKGROUND Distinct populations of neutrophils have been identified based on the expression of intercellular adhesion molecule 1 (ICAM1, CD54) and chemokine receptor 1 (CXCR1, interleukin 8 receptor α). AIM We analyzed the expression of vascular endothelial growth factor receptor 1 (VEGFR1), a physiological negative regulator of angiogenesis, on distinct populations of neutrophils from the blood of patients before and after adjuvant chemotherapy for breast cancer. MATERIALS AND METHODS Neutrophil populations were distinguished as reverse transmigrated (ICAM1(high)/CXCR1(low)), naïve (ICAM1(low)/CXCR1(high)), or tissue-resident neutrophils (ICAM1(low)/CXCR1(low)), and their VEGFR1 expression quantified. RESULTS Reverse transmigrated ICAM1(high)/CXCR1(low) neutrophilic granulocytes decreased significantly after chemotherapy and these were also the cells with highest mean fluorescence intensity for VEGFR1. CONCLUSION Chemotherapy mainly reduces the number of reverse transmigrated long-lived ICAM1(high)/CXCR1(low) VEGFR1-expressing neutrophils. The decrease of antiangiogenic VEGFR1 may have a potential impact on tumour angiogenesis in patients undergoing adjuvant chemotherapy.
Resumo:
Prostaglandins such as prostaglandin E2 (PGE2) play a pivotal role in physiological and pathophysiological pathways in gastric mucosa. Little is known about the interrelation of the prostaglandin E (EP) receptors with the prostaglandin transporter OATP2A1 in the gastric mucosa and gastric carcinoma. Therefore, we first investigated the expression of OATP2A1 and EP4 in normal and carcinoma gastric mucosa. Different PGE2-mediated cellular pathways and mechanisms were investigated using human embryonic kidney cells (HEK293) and the human gastric carcinoma cell line AGS stably transfected with OATP2A1. Colocalization and expression of OATP2A1 and EP4 were detected in mucosa of normal gastric tissue and of gastric carcinomas. OATP2A1 reduced the PGE2-mediated cAMP production in HEK293 and AGS cells overexpressing EP4 and OATP2A1. The expression of OATP2A1 in AGS cells resulted in a reduction of [(3)H]-thymidine incorporation which was in line with a higher accumulation of AGS-OATP2A1 cells in S-phase of the cell cycle compared to control cells. In contrast, the expression of OATP2A1 in HEK293 cells had no influence on the distribution in the S-phase compared to control cells. OATP2A1 also diminished the PGE2-mediated expression of interleukin-8 mRNA (IL-8) and hypoxia-inducible-factor 1α (HIF1α) protein in AGS-OATP2A1 cells. The expression of OATP2A1 increased the sensitivity of AGS cells against irinotecan which led to reduced cell viability. Taken together, these data show that OATP2A1 influences PGE2-mediated cellular pathways. Therefore, OATP2A1 needs to be considered as a key determinant for the understanding of the physiology and pathophysiology of prostaglandins in healthy and tumorous gastric mucosa.
Resumo:
The production of epithelial neutrophil activating peptide-78 (NA-78) and the interleukins IL-8 and IL-6 by endometrial stromal cells is stimulated by pro-inflammatory interleukin-1 (IL-1) and tumour necrosis factor-α (TNF-α). IL-8 is suggested to play a role in the pathogenesis of endometriosis, and in these women the peritoneal fluid concentrations of ENA-78 and IL-8 are increased. TNF-α has been tested together with interferon-γ because of their cooperative stimulation of IL-6. The release of IL-8, however, is inhibited with increasing interferon levels. The aim of the study was the analysis of the production of ENA-78, IL-6 and IL-8 by cultured human endometrial stromal cells in the presence of varying concentrations of IL-1β, TNF-α, and interferon-γ.
Resumo:
The IABP-SHOCK-trial was a morbidity-based randomized controlled trial in patients with infarction-related cardiogenic shock (CS), which used the change of the quantified degree of multiorgan failure as determined by APACHE II score over a 4-day period as primary outcome measure. The prospective hypothesis was that adding IABP therapy to "standard care" would improve CS-triggered multi organ dysfunction syndrome (MODS). The primary endpoint showed no difference between conventionally managed cardiogenic shock patients and those with IABP support. In an inflammatory marker substudy, we analysed the prognostic value of interleukin (IL)-1β, -6, -7, -8, and -10 in patients with acute myocardial infarction complicated by cardiogenic shock.
Resumo:
Toll interleukin-1 receptor (IL-1R) 8 (TIR8), also known as single Ig IL-1 receptor (IL-R)-related molecule, or SIGIRR, is a member of the IL-1R-like family, primarily expressed by epithelial cells. Current evidence suggests that TIR8 plays a nonredundant role as a negative regulator in vivo under different inflammatory conditions that are dependent on IL-R and Toll-like receptor (TLR) activation. In the present study, we examined the role of TIR8 in innate resistance to acute lung infections caused by Pseudomonas aeruginosa, a Gram-negative pathogen responsible for life-threatening infections in immunocompromised individuals and cystic fibrosis patients. We show that Tir8 deficiency in mice was associated with increased susceptibility to acute P. aeruginosa infection, in terms of mortality and bacterial load, and to exacerbated local and systemic production of proinflammatory cytokines (gamma interferon [IFN-γ], tumor necrosis factor alpha [TNF-α], IL-1β, and IL-6) and chemokines (CXCL1, CXCL2, and CCL2). It has been reported that host defense against P. aeruginosa acute lung infection can be improved by blocking IL-1 since exaggerated IL-1β production may be harmful for the host in this infection. In agreement with these data, IL-1RI deficiency rescues the phenotype observed in Tir8-deficient mice: in Tir8-/- IL-1RI-/- double knockout mice we observed higher survival rates, enhanced bacterial clearance, and reduced levels of local and systemic cytokine and chemokine levels than in Tir8-deficient mice. These results suggest that TIR8 has a nonredundant effect in modulating the inflammation caused by P. aeruginosa, in particular, by negatively regulating IL-1RI signaling, which plays a major role in the pathogenesis of this infectious disease.