50 resultados para Intercellular osmoregulation
Resumo:
Excessive erythrocytosis results in severely increased blood viscosity, which may have significant detrimental effects on endothelial cells and, ultimately, function of the vascular endothelium. Because blood-brain barrier stability is crucial for normal physiological function, we used our previously characterized erythropoietin-overexpressing transgenic (tg6) mouse line (which has a hematocrit of 0.8-0.9) to investigate the effect of excessive erythrocytosis on vessel number, structure, and integrity in vivo. These mice have abnormally high levels of nitric oxide (NO), a potent proinflammatory molecule, suggesting altered vascular permeability and function. In this study, we observed that brain vessel density of tg6 mice was significantly reduced (16%) and vessel diameter was significantly increased (15%) compared with wild-type mice. Although no significant increases in vascular permeability under normoxic or acute hypoxic conditions (8% O2 for 4 h) were detected, electron-microscopic analysis revealed altered morphological characteristics of the tg6 endothelium. Tg6 brain vascular endothelial cells appeared to be activated, with increased luminal protrusions reminiscent of ongoing inflammatory processes. Consistent with this observation, we detected increased levels of intercellular adhesion molecule-1 and von Willebrand factor, markers of endothelial activation and damage, in brain tissue. We propose that chronic excessive erythrocytosis and sustained high hematocrit cause endothelial damage, which may, ultimately, increase susceptibility to vascular disease.
Resumo:
Gap junctions are clustered channels between contacting cells through which direct intercellular communication via diffusion of ions and metabolites can occur. Two hemichannels, each built up of six connexin protein subunits in the plasma membrane of adjacent cells, can dock to each other to form conduits between cells. We have recently screened mouse and human genomic data bases and have found 19 connexin (Cx) genes in the mouse genome and 20 connexin genes in the human genome. One mouse connexin gene and two human connexin genes do not appear to have orthologs in the other genome. With three exceptions, the characterized connexin genes comprise two exons whereby the complete reading frame is located on the second exon. Targeted ablation of eleven mouse connexin genes revealed basic insights into the functional diversity of the connexin gene family. In addition, the phenotypes of human genetic disorders caused by mutated connexin genes further complement our understanding of connexin functions in the human organism. In this review we compare currently identified connexin genes in both the mouse and human genome and discuss the functions of gap junctions deduced from targeted mouse mutants and human genetic disorders.
Resumo:
Gap junctions serve for direct intercellular communication by docking of two hemichannels in adjacent cells thereby forming conduits between the cytoplasmic compartments of adjacent cells. Connexin genes code for subunit proteins of gap junction channels and are members of large gene families in mammals. So far, 17 connexin (Cx) genes have been described and characterized in the murine genome. For most of them, orthologues in the human genome have been found (see White and Paul 1999; Manthey et al. 1999; Teubner et al. 2001; Söhl et al. 2001). We have recently performed searches for connexin genes in murine and human gene libraries available at EMBL/Heidelberg, NCBI and the Celera company that have increased the number of identified connexins to 19 in mouse and 20 in humans. For one mouse connexin gene and two human connexin genes we did not find orthologues in the other genome. Here we present a short overview on distinct connexin genes which we found in the mouse and human genome and which may include all members of this gene family, if no further connexin gene will be discovered in the remaining non-sequenced parts (about 1-5%) of the genomes.
Resumo:
We recently reported that the pathogenesis of pemphigus vulgaris (PV), an autoimmune blistering skin disorder, is driven by the accumulation of c-Myc secondary to abrogation of plakoglobin (PG)-mediated transcriptional c-Myc suppression. PG knock-out mouse keratinocytes express high levels of c-Myc and resemble PVIgG-treated wild-type keratinocytes in most respects. However, they fail to accumulate nuclear c-Myc and loose intercellular adhesion in response to PVIgG-treatment like wild-type keratinocytes. This suggested that PG is also required for propagation of the PVIgG-induced events between augmented c-Myc expression and acantholysis. Here, we addressed this possibility by comparing PVIgG-induced changes in the desmosomal organization between wild-type and PG knock-out keratinocytes. We found that either bivalent PVIgG or monovalent PV-Fab (known to trigger blister formation in vivo) disrupt the linear organization of all major desmosomal components along cell borders in wild-type keratinocytes, simultaneously with a reduction in intercellular adhesive strength. In contrast, PV-Fab failed to affect PG knock-out keratinocytes while PVIgG cross-linked their desmosomal cadherins without significantly affecting desmoplakin. These results identify PG as a principle effector of the PVIgG-induced signals downstream of c-Myc that disrupt the desmosomal plaque at the plasma membrane.
Resumo:
Vascular endothelial (VE)-cadherin is an essential protein of adherens junctions of endothelial cells and plays a pivotal role in vascular homeostasis. Mammalian target of rapamycin complex 2 (mTORC2) deficient mice display defects in fetal vascular development. Blocking mTOR or the upstream kinase phosphoinositide 3-kinase (PI3K) led to a dose-dependently decrease of the VE-cadherin mRNA and protein expression. Immunofluorescent staining showed a strongly decreased expression of VE-cadherin at the interface of human umbilical endothelial cells (HUVECs) followed by intercellular gap formation. Herewith, we demonstrated that the expression of VE-cadherin is dependent on mTOR and PI3K signaling.
Resumo:
Tubulo-interstitial fibrosis is a constant feature of chronic renal failure and it is suspected to contribute importantly to the deterioration of renal function. In the fibrotic kidney there exists, besides normal fibroblasts, a large population of myofibroblasts, which are supposedly responsible for the increased production of intercellular matrix. It has been proposed that myofibroblasts in chronic renal failure originate from the transformation of tubular cells via epithelial-mesenchymal transition (EMT) or from infiltration by bone marrow-derived precursors. Little attention has been paid to the possibility of a transformation of resident fibroblasts into myofibroblasts in renal fibrosis. Therefore we examined the fate of resident fibroblasts in the initial phase of renal fibrosis in the classical model of unilateral ureter obstruction (UUO) in the rat. Rats were perfusion-fixed on days 1, 2, 3 and 4 after ligature of the right ureter. Starting from 1 day of UUO an increasing expression of alpha-smooth muscle actin (alphaSMA) in resident fibroblasts was revealed by immunofluorescence and confirmed by the observation of bundles of microfilaments and webs of intermediate filaments in the electron microscope. Inversely, there was a decreased expression of 5'-nucleotidase (5'NT), a marker of renal cortical fibroblasts. The RER became more voluminous, suggesting an increased synthesis of matrix. Intercellular junctions, a characteristic feature of myofibroblasts, became more frequent. The mitotic activity in fibroblasts was strongly increased. Renal tubules underwent severe regressive changes but the cells retained their epithelial characteristics and there was no sign of EMT. In conclusion, after ureter ligature, resident peritubular fibroblasts proliferated and they showed progressive alterations, suggesting a transformation in myofibroblasts. Thus the resident fibroblasts likely play a central role in fibrosis in that model.
Resumo:
Exosomes are small natural membrane vesicles released by a wide variety of cell types into the extracellular compartment by exocytosis. The biological functions of exosomes are only slowly unveiled, but it is clear that they serve to remove unnecessary cellular proteins (e.g., during reticulocyte maturation) and act as intercellular messengers because they fuse easily with the membranes of neighboring cells, delivering membrane and cytoplasmic proteins from one cell to another. Recent findings suggests that cell-derived vesicles (exosomes are also named membranous vesicles or microvesicles) could also induce immune tolerance, suppression of natural killer cell function, T cell apoptosis, or metastasis. For example, by secreting exosomes, tumors may be able to accomplish the loss of those antigens that may be immunogenic and capable of signaling to immune cells as well as inducing dysfunction or death of immune effector cells. On the other hand, dendritic cell-derived exosomes have the potential to be an attractive powerful immunotherapeutic tool combining the antitumor activity of dendritic cells with the advantages of a cell-free vehicle. Although the full understanding of the significance of exosomes requires additional studies, these membrane vesicles could become a new important component in orchestrating responses between cells.
Resumo:
Elevated levels of inflammatory biomarkers are associated with the pathophysiology of cardiovascular diseases and are predictors of cardiovascular events. The objective of this study was to determine the unique contributions of metabolic factors as predictors of inflammation (C-reactive protein (CRP) and interleukin-6 (IL-6)), adhesion (soluble intercellular adhesion molecule-1 (sICAM-1)), and coagulation (D-dimer) in healthy younger-aged adults. Participants were 83 women and 92 men (mean age 30.04 years, s.d. +/- 4.8, range 22-39) of normal weight to moderate obese weight (mean BMI 24.4 kg/m(2), s.d. +/- 3.35, range 17-32). The primary data analytical approaches included Pearson correlation and multiple linear regression. Circulating levels of CRP, IL-6, sICAM-1, and D-dimer were determined in plasma. Higher levels of CRP were independently associated with higher BMI, a greater waist-to-hip ratio, female gender, and higher triglycerides (P < 0.001). Higher IL-6 levels were independently associated with a greater waist-to-hip ratio (P < 0.01). Higher levels of sICAM-1 were independently associated with higher BMI, higher triglycerides, and lower insulin resistance (P < 0.001). Higher D-dimer levels were independently associated with higher BMI and being female (P < 0.001). Having a higher BMI was most consistently associated with elevated biomarkers of inflammation, adhesion, and coagulation in this sample of healthy younger-aged adults, although female gender, insulin resistance, and lipid levels were also related to the biomarkers. The findings provide insight into the adverse cardiovascular risk associated with elevated body weight in younger adults.
Resumo:
Posttraumatic stress disorder (PTSD) confers an increased cardiovascular risk. In 14 otherwise healthy patients with PTSD and in 14 age- and gender-matched non-PTSD controls, we investigated whether the categorical diagnosis of PTSD and severity of PTSD symptom clusters (i.e. re-experiencing, avoidance, arousal, and overall score) would be associated with plasma concentrations of three markers of endothelial dysfunction [soluble tissue factor (sTF), von Willebrand factor (VWF), and soluble intercellular adhesion molecule (sICAM)-1]. Compared with controls, patients had significantly higher sTF; this difference became nonsignificant when controlling for psychological distress. VWF and sICAM-1 levels were not significantly different between patients and controls. In the entire sample virtually all PTSD symptom clusters correlated significantly and positively with sTF and VWF but not with sICAM-1. The correlation between symptoms of re-experiencing and sTF was significantly different between patients and controls. Controlling for symptoms of anxiety and depression (i.e. psychological distress) rendered most associations between PTSD symptom clusters and sTF nonsignificant, whereas controlling for age retained significance of associations with VWF. Posttraumatic stress showed a continuous relationship with sTF and VWF, with the former relationship being partly affected by psychological distress. This suggests one mechanism by which posttraumatic stress could contribute to atherosclerosis.
Resumo:
Although chemotherapy for breast cancer can increase inflammation, few studies have examined predictors of this phenomenon. This study examined potential contributions of demographics, disease characteristics, and treatment regimens to markers of inflammation in response to chemotherapy for breast cancer. Thirty-five women with stage I-III-A breast cancer (mean age 50 years) were studied prior to cycle 1 and prior to cycle 4 of anthracycline-based chemotherapy. Circulating levels of inflammatory markers with high relevance to breast cancer were examined, including C-reactive protein (CRP), tumor necrosis factor-alpha (TNF-alpha), Interleukin-1 receptor antagonist (IL1-RA), vascular endothelial growth factor (VEGF), soluble intercellular adhesion molecule-1 (sICAM-1), Interleukin- (IL-6), soluble P-selectin (sP-selectin), and von Willebrand factor (vWf). Chemotherapy was associated with elevations in VEGF (p < or = 0.01), sICAM-1 (p < or = 0.01), sP-selectin (p < or = 0.02) and vWf (p < or = 0.05). Multiple regression analysis controlling for age and body mass index (BMI) showed that higher post-chemotherapy levels of inflammation were consistently related to higher pre-chemotherapy levels of inflammation (ps < or =0.05) as well as to certain disease characteristics. Post-chemotherapy IL-6 levels were higher in patients who had larger tumors (p < or = 0.05) while post-chemotherapy VEGF levels were higher in patients who had smaller tumors (p < or = 0.05). Post-chemotherapy sP-selectin levels were highest in women who had received epirubicin, cytoxan, 5-fluorouracil chemotherapy (p < or = 0.01). These findings indicate that chemotherapy treatment can be associated with elevations in certain markers of inflammation, particularly markers of endothelial and platelet activation. Inflammation in response to chemotherapy is most significantly related to inflammation that existed prior to chemotherapy but also potentially to treatment regimen and to certain disease characteristics.
Resumo:
Leukocyte transmigration is mediated by endothelial cell (EC) junctional molecules, but the associated mechanisms remain unclear. Here we investigate how intercellular adhesion molecule-2 (ICAM-2), junctional adhesion molecule-A (JAM-A), and platelet endothelial cell adhesion molecule (PECAM-1) mediate neutrophil transmigration in a stimulus-dependent manner (eg, as induced by interleukin-1beta [IL-1beta] but not tumor necrosis factor-alpha [TNF-alpha]), and demonstrate their ability to act in sequence. Using a cell-transfer technique, transmigration responses of wild-type and TNF-alpha p55/p75 receptor-deficient leukocytes (TNFR(-/-)) through mouse cremasteric venules were quantified by fluorescence intravital microscopy. Whereas wild-type leukocytes showed a normal transmigration response to TNF-alpha in ICAM-2(-/-), JAM-A(-/-), and PECAM-1(-/-) recipient mice, TNFR(-/-) leukocytes exhibited a reduced transmigration response. Hence, when the ability of TNF-alpha to directly stimulate neutrophils is blocked, TNF-alpha-induced neutrophil transmigration is rendered dependent on ICAM-2, JAM-A, and PECAM-1, suggesting that the stimulus-dependent role of these molecules is governed by the target cell being activated. Furthermore, analysis of the site of arrest of neutrophils in inflamed tissues from ICAM-2(-/-), JAM-A(-/-), and PECAM-1(-/-) mice demonstrated that these molecules act sequentially to mediate transmigration. Collectively, the findings provide novel insights into the mechanisms of action of key molecules implicated in leukocyte transmigration.
Resumo:
Notch is an intercellular signaling pathway related mainly to sprouting neo-angiogenesis. The objective of our study was to evaluate the angiogenic mechanisms involved in the vascular augmentation (sprouting/intussusception) after Notch inhibition within perfused vascular beds using the chick area vasculosa and MxCreNotch1(lox/lox) mice. In vivo monitoring combined with morphological investigations demonstrated that inhibition of Notch signaling within perfused vascular beds remarkably induced intussusceptive angiogenesis (IA) with resultant dense immature capillary plexuses. The latter were characterized by 40 % increase in vascular density, pericyte detachment, enhanced vessel permeability, as well as recruitment and extravasation of mononuclear cells into the incipient transluminal pillars (quintessence of IA). Combination of Notch inhibition with injection of bone marrow-derived mononuclear cells dramatically enhanced IA with 80 % increase in vascular density and pillar number augmentation by 420 %. Additionally, there was down-regulation of ephrinB2 mRNA levels consequent to Notch inhibition. Inhibition of ephrinB2 or EphB4 signaling induced some pericyte detachment and resulted in up-regulation of VEGFRs but with neither an angiogenic response nor recruitment of mononuclear cells. Notably, Tie-2 receptor was down-regulated, and the chemotactic factors SDF-1/CXCR4 were up-regulated only due to the Notch inhibition. Disruption of Notch signaling at the fronts of developing vessels generally results in massive sprouting. On the contrary, in the already existing vascular beds, down-regulation of Notch signaling triggered rapid augmentation of the vasculature predominantly by IA. Notch inhibition disturbed vessel stability and led to pericyte detachment followed by extravasation of mononuclear cells. The mononuclear cells contributed to formation of transluminal pillars with sustained IA resulting in a dense vascular plexus without concomitant vascular remodeling and maturation.
Resumo:
Research on endocrine disruption in fish has been dominated by studies on estrogen-active compounds which act as mimics of the natural estrogen, 17β-estradiol (E2), and generally exert their biological actions by binding to and activation of estrogen receptors (ERs). Estrogens play central roles in reproductive physiology and regulate (female) sexual differentiation. In line with this, most adverse effects reported for fish exposed to environmental estrogens relate to sexual differentiation and reproduction. E2, however, utilizes a variety of signaling mechanisms, has multifaceted functions and targets, and therefore the toxicological and ecological effects of environmental estrogens in fish will extend beyond those associated with the reproduction. This review first describes the diversity of estrogen receptor signaling in fish, including both genomic and non-genomic mechanisms, and receptor crosstalk. It then considers the range of non-reproductive physiological processes in fish that are known to be responsive to estrogens, including sensory systems, the brain, the immune system, growth, specifically through the growth hormone/insulin-like growth factor system, and osmoregulation. The diversity in estrogen responses between fish species is then addressed, framed within evolutionary and ecological contexts, and we make assessments on their relevance for toxicological sensitivity as well as ecological vulnerability. The diversity of estrogen actions raises questions whether current risk assessment strategies, which focus on reproductive endpoints, and a few model fish species only, are protective of the wider potential health effects of estrogens. Available - although limited - evidence nevertheless suggests that quantitative environmental threshold concentrations for environmental protection derived from reproductive tests with model fish species are protective for non-reproductive effects as well. The diversity of actions of estrogens across divergent physiological systems, however, may lead to and underestimation of impacts on fish populations as their effects are generally considered on one functional process only and this may underrepresent the impact on the different physiological processes collectively.
Resumo:
Activated T cells use very late antigen-4/α4β1 integrin for capture, rolling on, and firm adhesion to endothelial cells, and use leukocyte function-associated antigen-1/αLβ2 integrin for subsequent crawling and extravasation. Inhibition of α4β1 is sufficient to prevent extravasation of activated T cells and is successfully used to combat autoimmune diseases, such as multiple sclerosis. Here we show that effector T cells lacking the integrin activator Kindlin-3 extravasate and induce experimental autoimmune encephalomyelitis in mice immunized with autoantigen. In sharp contrast, adoptively transferred autoreactive T cells from Kindlin-3-deficient mice fail to extravasate into the naïve CNS. Mechanistically, autoreactive Kindlin-3-null T cells extravasate when the CNS is inflamed and the brain microvasculature expresses high levels of integrin ligands. Flow chamber assays under physiological shear conditions confirmed that Kindlin-3-null effector T cells adhere to high concentrations of vascular cell adhesion molecule-1 and intercellular adhesion molecule-1, albeit less efficiently than WT T cells. Although these arrested T cells polarize and start crawling, only few remain firmly adherent over time. Our data demonstrate that the requirement of Kindlin-3 for effector T cells to induce α4β1 and αLβ2 integrin ligand binding and stabilization of integrin-ligand bonds is critical when integrin ligand levels are low, but of less importance when integrin ligand levels are high.
Resumo:
Animal migration is an amazing phenomenon that has fascinated humans for long. Many freshwater fishes also show remarkable migrations, whereof the spectacular mass migrations of salmonids from the spawning streams are the most well known and well studied. However, recent studies have shown that migration occurs in a range of freshwater fish taxa from many different habitats. In this review we focus on the causes and consequences of migration in freshwater fishes. We start with an introduction of concepts and categories of migration, and then address the evolutionary causes that drive individuals to make these migratory journeys. The basis for the decision of an individual fish to migrate or stay resident is an evaluation of the costs and benefits of different strategies to maximize its lifetime reproductive effort. We provide examples by discussing our own work on the causes behind seasonal migration in a cyprinid fish, roach (Rutilus rutilus (L., 1758)), within this framework. We then highlight different adaptations that allow fish to migrate over sometimes vast journeys across space, including capacity for orientation, osmoregulation, and efficient energy expenditure. Following this we consider the consequences of migration in freshwater fish from ecological, evolutionary, and conservation perspectives, and finally, we detail some of the recent developments in the methodologies used to collect data on fish migration and how these could be used in future research.