87 resultados para Interaction analysis in education
Resumo:
A minimal marginal bone loss around implants during early healing has been considered acceptable. However, the preservation of the marginal bone is related to soft tissue stability and esthetics. Implant designs and surfaces were evaluated to determine their impact on the behavior of the crestal bone. The purpose of this study is to evaluate histologic marginal bone level changes around early loaded, chemically modified, sandblasted acid-etched-surfaced implants with a machined collar (MC) or no MC (NMC).
Resumo:
We analyzed immunohistochemically the expression of CD24 and spliced variants of CD44v5 and v9 in invasive micropapillary carcinoma (IMPC) of the breast that is a rather aggressive tumor characterized by alteration of cells adhesion molecules, early lymph node metastases and poor prognosis. We analyzed 31 high-grade IMPCs and compared their expression to 22 high grade (G3) invasive ductal carcinomas of the breast (IDCs). We found a higher expression of CD24 in high-grade IMPCs with a peculiar inverted apical localization, compared to IDCs, showing a strong cytoplasmic staining; normal breast tissue resulted completely negative. IMPCs showed reduced expression of CD44v5 and CD44v9 compared with IDCs, but without a statistical significant difference. This study demonstrated that IMPC represents a distinct entity of breast carcinoma with high expression of CD24 with a typical inverted apical membrane pattern and reduction of CD44 isoforms v5 and v9, compared to IDCs. These features could explain the high lymph-vascular invasion propensity and higher metastatic capability of these tumors and could be a useful tool for a future targeted therapy.
Resumo:
Stereology is an essential method for quantitative analysis of lung structure. Adequate fixation is a prerequisite for stereological analysis to avoid bias in pulmonary tissue, dimensions and structural details. We present a technique for in situ fixation of large animal lungs for stereological analysis, based on closed loop perfusion fixation.
Resumo:
Dahl salt-sensitive (DS) and salt-resistant (DR) inbred rat strains represent a well established animal model for cardiovascular research. Upon prolonged administration of high-salt-containing diet, DS rats develop systemic hypertension, and as a consequence they develop left ventricular hypertrophy, followed by heart failure. The aim of this work was to explore whether this animal model is suitable to identify biomarkers that characterize defined stages of cardiac pathophysiological conditions. The work had to be performed in two stages: in the first part proteomic differences that are attributable to the two separate rat lines (DS and DR) had to be established, and in the second part the process of development of heart failure due to feeding the rats with high-salt-containing diet has to be monitored. This work describes the results of the first stage, with the outcome of protein expression profiles of left ventricular tissues of DS and DR rats kept under low salt diet. Substantial extent of quantitative and qualitative expression differences between both strains of Dahl rats in heart tissue was detected. Using Principal Component Analysis, Linear Discriminant Analysis and other statistical means we have established sets of differentially expressed proteins, candidates for further molecular analysis of the heart failure mechanisms.
Resumo:
Patients with panic disorder (PD) have a bias to respond to normal stimuli in a fearful way. This may be due to the preactivation of fear-associated networks prior to stimulus perception. Based on EEG, we investigated the difference between patients with PD and normal controls in resting state activity using features of transiently stable brain states (microstates). EEGs from 18 drug-naive patients and 18 healthy controls were analyzed. Microstate analysis showed that one class of microstates (with a right-anterior to left-posterior orientation of the mapped field) displayed longer durations and covered more of the total time in the patients than controls. Another microstate class (with a symmetric, anterior-posterior orientation) was observed less frequently in the patients compared to controls. The observation that selected microstate classes differ between patients with PD and controls suggests that specific brain functions are altered already during resting condition. The altered resting state may be the starting point of the observed dysfunctional processing of phobic stimuli.
Resumo:
BACKGROUND: Reference values for quantitative electromyography (QEMG) in neck muscles of Royal Dutch Sport horses are lacking. OBJECTIVE: Determine normative data on quantitative motor unit action potential (QMUP) analysis of serratus ventralis cervicis (SV) and brachiocephalicus (BC) muscle. ANIMALS: Seven adult normal horses (mean age 9.5 standard deviation [SD] +/- 2.3 years, mean height 1.64 SD +/- 4.5 cm, and mean rectal temperature 37.6 SD +/- 0.3 degrees C). METHODS: An observational study on QMUP analysis in 6 segments of each muscle was performed with commercial electromyography equipment. Measurements were made according to formerly published methods. Natural logarithm transformed data were tested with ANOVA and posthoc testing according to Bonferroni. RESULTS: Mean duration, amplitude, phases, turns, area, and size index (SI) did not differ significantly among the 6 segments in each muscle. Mean amplitude, number of phases, and SI were significantly (P < .002) higher in SV than BC, 520 versus 448 muV, 3.0 versus 2.8 muV, and 0.48 versus 0.30 muV, respectively. In SV 95% confidence intervals (CI) for amplitude, duration, number of phases, turns, polyphasia area, and SI were 488-551 muV, 4.3-4.6 ms, 2.9-3.0, 2.4-2.6, 7-12%, 382-448, and 0.26-0.70, respectively; in BC this was 412-483 muV, 4.3-4.7 ms, 2.7-2.8, 2.4-2.6, 4-7%, 393-469, and 0.27-0.34, respectively. Maximal voluntary activity expressed by turns/second did not differ significantly between SV and BC with a 95% CI of 132-173 and 137-198, respectively. CONCLUSIONS AND CLINICAL IMPORTANCE: The establishment of normative data makes objective QEMG of paraspinal muscles in horses suspected of cervical neurogenic disorders possible. Differences between muscles should be taken into account.
Resumo:
Detection of arrhythmic atrial beats in surface ECGs can be challenging when they are masked by the R or T wave, or do not affect the RR-interval. Here, we present a solution using a high-resolution esophageal long-term ECG that offers a detailed view on the atrial electrical activity. The recorded ECG shows atrial ectopic beats with long coupling intervals, which can only be successfully classified using additional morphology criteria. Esophageal high-resolution ECGs provide this information, whereas surface long-term ECGs show poor atrial signal quality. This new method is a promising tool for the long-term rhythm monitoring with software-based automatic classification of atrial beats.