122 resultados para Intensity-Modulated


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The synchronization of dynamic multileaf collimator (DMLC) response with respiratory motion is critical to ensure the accuracy of DMLC-based four dimensional (4D) radiation delivery. In practice, however, a finite time delay (response time) between the acquisition of tumor position and multileaf collimator response necessitates predictive models of respiratory tumor motion to synchronize radiation delivery. Predicting a complex process such as respiratory motion introduces geometric errors, which have been reported in several publications. However, the dosimetric effect of such errors on 4D radiation delivery has not yet been investigated. Thus, our aim in this work was to quantify the dosimetric effects of geometric error due to prediction under several different conditions. Conformal and intensity modulated radiation therapy (IMRT) plans for a lung patient were generated for anterior-posterior/posterior-anterior (AP/PA) beam arrangements at 6 and 18 MV energies to provide planned dose distributions. Respiratory motion data was obtained from 60 diaphragm-motion fluoroscopy recordings from five patients. A linear adaptive filter was employed to predict the tumor position. The geometric error of prediction was defined as the absolute difference between predicted and actual positions at each diaphragm position. Distributions of geometric error of prediction were obtained for all of the respiratory motion data. Planned dose distributions were then convolved with distributions for the geometric error of prediction to obtain convolved dose distributions. The dosimetric effect of such geometric errors was determined as a function of several variables: response time (0-0.6 s), beam energy (6/18 MV), treatment delivery (3D/4D), treatment type (conformal/IMRT), beam direction (AP/PA), and breathing training type (free breathing/audio instruction/visual feedback). Dose difference and distance-to-agreement analysis was employed to quantify results. Based on our data, the dosimetric impact of prediction (a) increased with response time, (b) was larger for 3D radiation therapy as compared with 4D radiation therapy, (c) was relatively insensitive to change in beam energy and beam direction, (d) was greater for IMRT distributions as compared with conformal distributions, (e) was smaller than the dosimetric impact of latency, and (f) was greatest for respiration motion with audio instructions, followed by visual feedback and free breathing. Geometric errors of prediction that occur during 4D radiation delivery introduce dosimetric errors that are dependent on several factors, such as response time, treatment-delivery type, and beam energy. Even for relatively small response times of 0.6 s into the future, dosimetric errors due to prediction could approach delivery errors when respiratory motion is not accounted for at all. To reduce the dosimetric impact, better predictive models and/or shorter response times are required.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Detailed knowledge of the characteristics of the radiation field shaped by a multileaf collimator (MLC) is essential in intensity modulated radiotherapy (IMRT). A previously developed multiple source model (MSM) for a 6 MV beam was extended to a 15 MV beam and supplemented with an accurate model of an 80-leaf dynamic MLC. Using the supplemented MSM and the MC code GEANT, lateral dose distributions were calculated in a water phantom and a portal water phantom. A field which is normally used for the validation of the step and shoot technique and a field from a realistic IMRT treatment plan delivered with dynamic MLC are investigated. To assess possible spectral changes caused by the modulation of beam intensity by an MLC, the energy spectra in five portal planes were calculated for moving slits of different widths. The extension of the MSM to 15 MV was validated by analysing energy fluences, depth doses and dose profiles. In addition, the MC-calculated primary energy spectrum was verified with an energy spectrum which was reconstructed from transmission measurements. MC-calculated dose profiles using the MSM for the step and shoot case and for the dynamic MLC case are in very good agreement with the measured data from film dosimetry. The investigation of a 13 cm wide field shows an increase in mean photon energy of up to 16% for the 0.25 cm slit compared to the open beam for 6 MV and of up to 6% for 15 MV, respectively. In conclusion, the MSM supplemented with the dynamic MLC has proven to be a powerful tool for investigational and benchmarking purposes or even for dose calculations in IMRT.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

PURPOSE: Study of behavior and influence of a multileaf collimator (MLC) on dose calculation, verification, and portal energy spectra in the case of intensity-modulated fields obtained with a step-and-shoot or a dynamic technique. METHODS: The 80-leaf MLC for the Varian Clinac 2300 C/D was implemented in a previously developed Monte Carlo (MC) based multiple source model (MSM) for a 6 MV photon beam. Using this model and the MC program GEANT, dose distributions, energy fluence maps and energy spectra at different portal planes were calculated for three different MLC applications. RESULTS: The comparison of MC-calculated dose distributions in the phantom and portal plane, with those measured with films showed an agreement within 3% and 1.5 mm for all cases studied. The deviations mainly occur in the extremes of the intensity modulation. The MC method allows to investigate, among other aspects, dose components, energy fluence maps, tongue-and-groove effects and energy spectra at portal planes. CONCLUSION: The MSM together with the implementation of the MLC is appropriate for a number of investigations in intensity-modulated radiation therapy (IMRT).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The verification possibilities of dynamically collimated treatment beams with a scanning liquid ionization chamber electronic portal image device (SLIC-EPID) are investigated. The ion concentration in the liquid of a SLIC-EPID and therefore the read-out signal is determined by two parameters of a differential equation describing the creation and recombination of the ions. Due to the form of this equation, the portal image detector describes a nonlinear dynamic system with memory. In this work, the parameters of the differential equation were experimentally determined for the particular chamber in use and for an incident open 6 MV photon beam. The mathematical description of the ion concentration was then used to predict portal images of intensity-modulated photon beams produced by a dynamic delivery technique, the sliding window approach. Due to the nature of the differential equation, a mathematical condition for 'reliable leaf motion verification' in the sliding window technique can be formulated. It is shown that the time constants for both formation and decay of the equilibrium concentration in the chamber is in the order of seconds. In order to guarantee reliable leaf motion verification, these time constants impose a constraint on the rapidity of the image-read out for a given maximum leaf speed. For a leaf speed of 2 cm s(-1), a minimum image acquisition frequency of about 2 Hz is required. Current SLIC-EPID systems are usually too slow since they need about a second to acquire a portal image. However, if the condition is fulfilled, the memory property of the system can be used to reconstruct the leaf motion. It is shown that a simple edge detecting algorithm can be employed to determine the leaf positions. The method is also very robust against image noise.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In external beam radiotherapy, electronic portal imaging becomes more and more an indispensable tool for the verification of the patient setup. For the safe clinical introduction of high dose conformal radiotherapy like intensity modulated radiation therapy, on-line patient setup verification is a prerequisite to ensure that the planned dosimetric coverage of the tumor volume is actually realized in the patient. Since the direction of setup fields often deviates from the direction of the treatment beams, extra dose is delivered to the patient during the acquisition of these portal images which may reach clinical relevance. The aim of this work was to develop a new acquisition mode for the PortalVision aS500 electronic portal imaging device from Varian Medical Systems that allows one to take portal images with reduced dose while keeping good image quality. The new acquisition mode, called RadMode, selectively enables and disables beam pulses during image acquisition allowing one to stop wasting valuable dose during the initial acquisition of "reset frames." Images of excellent quality can be taken with 1 MU only. This low dose per image facilitates daily setup verification with considerably reduced extra dose.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: The aim of this study was to report a case of squamous cell carcinoma of the petrous part of the temporal bone associated with a long history of secondary acquired cholesteatoma in a 71-year-old man. PATIENTS AND METHODS: We present the case of a 71-year-old man diagnosed with secondary acquired cholesteatoma in 1950. Treatments consisted of repetitive surgery owing to several relapses. In 2004, he presented with progressive fetid otorrhea. Clinical and computed tomography findings were indicative for relapsing cholesteatoma and a subtotal petrosectomy was performed. RESULTS: Histologic work-up demonstrated a moderately differentiated squamous cell carcinoma. The staging revealed stadium pT3 cN0 cM0. Postoperative treatment consisted of local radiation therapy with intensity-modulated beam geometry with a total of 64.2 Gy in 30 fractions using a simultaneous integrated boost. CONCLUSION: Middle ear carcinoma can arise from acquired cholesteatoma. The pathogenesis of squamous cell carcinoma associated with cholesteatoma has not been elucidated satisfactorily. Due to the complex anatomic features, intensity-modulated radiation therapy is the technique of choice for postoperative radiotherapy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

PURPOSE Different international target volume delineation guidelines exist and different treatment techniques are available for salvage radiation therapy (RT) for recurrent prostate cancer, but less is known regarding their respective applicability in clinical practice. METHODS AND MATERIALS A randomized phase III trial testing 64 Gy vs 70 Gy salvage RT was accompanied by an intense quality assurance program including a site-specific and study-specific questionnaire and a dummy run (DR). Target volume delineation was performed according to the European Organisation for the Research and Treatment of Cancer guidelines, and a DR-based treatment plan was established for 70 Gy. Major and minor protocol deviations were noted, interobserver agreement of delineated target contours was assessed, and dose-volume histogram (DVH) parameters of different treatment techniques were compared. RESULTS Thirty European centers participated, 43% of which were using 3-dimensional conformal RT (3D-CRT), with the remaining centers using intensity modulated RT (IMRT) or volumetric modulated arc technique (VMAT). The first submitted version of the DR contained major deviations in 21 of 30 (70%) centers, mostly caused by inappropriately defined or lack of prostate bed (PB). All but 5 centers completed the DR successfully with their second submitted version. The interobserver agreement of the PB was moderate and was improved by the DR review, as indicated by an increased κ value (0.59 vs 0.55), mean sensitivity (0.64 vs 0.58), volume of total agreement (3.9 vs 3.3 cm(3)), and decrease in the union volume (79.3 vs 84.2 cm(3)). Rectal and bladder wall DVH parameters of IMRT and VMAT vs 3D-CRT plans were not significantly different. CONCLUSIONS The interobserver agreement of PB delineation was moderate but was improved by the DR. Major deviations could be identified for the majority of centers. The DR has improved the acquaintance of the participating centers with the trial protocol.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND Induction chemotherapy followed by definitive chemoradiotherapy is an intensified treatment approach for locally advanced squamous cell carcinoma of the head and neck (HNSCC) that might be associated with high rates of toxicity. MATERIALS AND METHODS The data of 40 consecutive patients who underwent induction chemotherapy with docetaxel-containing regimens followed by intensity-modulated radiotherapy (IMRT) and concomitant systemic therapy for unresectable locally advanced HNSCC were retrospectively analyzed. Primary objectives were RT-related acute and late toxicity. Secondary objectives were response to induction chemotherapy, locoregional recurrence-free survival (LRRFS), overall survival (OS), and influencing factors for LRRFS and OS. RESULTS The median follow-up for surviving patients was 21 months (range, 2-53 months). Patients received a median of three cycles of induction chemotherapy followed by IMRT to 72 Gy. Three patients died during induction chemotherapy and one during chemoradiotherapy. Acute RT-related toxicity was of grade 3 and 4 in 72 and 3 % of patients, respectively, mainly dysphagia and dermatitis. Late RT-related toxicity was mainly xerostomia and bone/cartilage necrosis and was of grade 3 and 4 in 15 % of patients. One- and 2-year LRRFS and OS were 72 and 49 % and 77 and 71 %, respectively. CONCLUSION Induction chemotherapy followed by chemoradiotherapy using IMRT was associated with a high rate of severe acute and late RT-related toxicities in this selected patient cohort. Four patients were lost because of fatal complications. Induction chemotherapy did not compromise the delivery of full-dose RT; however, the use of three cycles of concomitant cisplatin was impaired.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To investigate the effect of metal implants in proton radiotherapy, dose distributions of different, clinically relevant treatment plans have been measured in an anthropomorphic phantom and compared to treatment planning predictions. The anthropomorphic phantom, which is sliced into four segments in the cranio-caudal direction, is composed of tissue equivalent materials and contains a titanium implant in a vertebral body in the cervical region. GafChromic® films were laid between the different segments to measure the 2D delivered dose. Three different four-field plans have then been applied: a Single-Field-Uniform-Dose (SFUD) plan, both with and without artifact correction implemented, and an Intensity-Modulated-Proton-Therapy (IMPT) plan with the artifacts corrected. For corrections, the artifacts were manually outlined and the Hounsfield Units manually set to an average value for soft tissue. Results show a surprisingly good agreement between prescribed and delivered dose distributions when artifacts have been corrected, with > 97% and 98% of points fulfilling the gamma criterion of 3%/3 mm for both SFUD and the IMPT plans, respectively. In contrast, without artifact corrections, up to 18% of measured points fail the gamma criterion of 3%/3 mm for the SFUD plan. These measurements indicate that correcting manually for the reconstruction artifacts resulting from metal implants substantially improves the accuracy of the calculated dose distribution.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

PURPOSE Hodgkin lymphoma (HL) is a highly curable disease. Reducing late complications and second malignancies has become increasingly important. Radiotherapy target paradigms are currently changing and radiotherapy techniques are evolving rapidly. DESIGN This overview reports to what extent target volume reduction in involved-node (IN) and advanced radiotherapy techniques, such as intensity-modulated radiotherapy (IMRT) and proton therapy-compared with involved-field (IF) and 3D radiotherapy (3D-RT)- can reduce high doses to organs at risk (OAR) and examines the issues that still remain open. RESULTS Although no comparison of all available techniques on identical patient datasets exists, clear patterns emerge. Advanced dose-calculation algorithms (e.g., convolution-superposition/Monte Carlo) should be used in mediastinal HL. INRT consistently reduces treated volumes when compared with IFRT with the exact amount depending on the INRT definition. The number of patients that might significantly benefit from highly conformal techniques such as IMRT over 3D-RT regarding high-dose exposure to organs at risk (OAR) is smaller with INRT. The impact of larger volumes treated with low doses in advanced techniques is unclear. The type of IMRT used (static/rotational) is of minor importance. All advanced photon techniques result in similar potential benefits and disadvantages, therefore only the degree-of-modulation should be chosen based on individual treatment goals. Treatment in deep inspiration breath hold is being evaluated. Protons theoretically provide both excellent high-dose conformality and reduced integral dose. CONCLUSION Further reduction of treated volumes most effectively reduces OAR dose, most likely without disadvantages if the excellent control rates achieved currently are maintained. For both IFRT and INRT, the benefits of advanced radiotherapy techniques depend on the individual patient/target geometry. Their use should therefore be decided case by case with comparative treatment planning.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE Intensity-modulated radiotherapy (IMRT) credentialing for a EORTC study was performed using an anthropomorphic head phantom from the Radiological Physics Center (RPC; RPC(PH)). Institutions were retrospectively requested to irradiate their institutional phantom (INST(PH)) using the same treatment plan in the framework of a Virtual Phantom Project (VPP) for IMRT credentialing. MATERIALS AND METHODS CT data set of the institutional phantom and measured 2D dose matrices were requested from centers and sent to a dedicated secure EORTC uploader. Data from the RPC(PH) and INST(PH) were thereafter centrally analyzed and inter-compared by the QA team using commercially available software (RIT; ver.5.2; Colorado Springs, USA). RESULTS Eighteen institutions participated to the VPP. The measurements of 6 (33%) institutions could not be analyzed centrally. All other centers passed both the VPP and the RPC ±7%/4 mm credentialing criteria. At the 5%/5 mm gamma criteria (90% of pixels passing), 11(92%) as compared to 12 (100%) centers pass the credentialing process with RPC(PH) and INST(PH) (p = 0.29), respectively. The corresponding pass rate for the 3%/3 mm gamma criteria (90% of pixels passing) was 2 (17%) and 9 (75%; p = 0.01), respectively. CONCLUSIONS IMRT dosimetry gamma evaluations in a single plane for a H&N prospective trial using the INST(PH) measurements showed agreement at the gamma index criteria of ±5%/5 mm (90% of pixels passing) for a small number of VPP measurements. Using more stringent, criteria, the RPC(PH) and INST(PH) comparison showed disagreement. More data is warranted and urgently required within the framework of prospective studies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND To evaluate toxicity and outcome of intensity modulated radiotherapy (IMRT) with simultaneous integrated boost (SIB) to the positive lymph nodes in patients with loco-regional advanced cervical cancer (LRACC). METHODS The study population comprised ten patients with 18FDG-PET\CT positive lymph nodes (LNs), who underwent chemoradiation with IMRT and SIB. A dose of 50.4 Gy, in daily fractions of 1.8 Gy, was delivered to primary tumor and draining LNs. Primary tumor received an additional external beam boost to a total dose of 55.8 Gy. A SIB of 62 Gy, in daily fractions of 2 Gy, was delivered to the 18FDG-PET\CT positive LNs. Finally, a high dose rate brachytherapy (HDRB) boost (15 - 18 Gy) was administered to the primary tumor. The primary goal of this study was to evaluate acute and early late toxicity and loco-regional control. RESULTS The median number of irradiated LNs per patient was 3 (range: 1-6) with a median middle nodal SIB-volume of 26.10 cm3 (range, 11.9-82.50 cm3). Median follow-up was 20 months (range, 12 to 30 months). Acute and late grade 3 toxicity was observed in 1 patient. Three of the patients developed a recurrence, one in the form of a local tumor relapse, one had a paraaortic LN metastasis outside the treated volume and the last one developed a distant metastasis. CONCLUSION IMRT with SIB in the region of 18FDG-PET positive lymph nodes appears to be an effective therapy with acceptable toxicity and might be useful in the treatment of patients with locally advanced cervical cancer.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

PURPOSE Patients with biochemical failure (BF) after radical prostatectomy may benefit from dose-intensified salvage radiation therapy (SRT) of the prostate bed. We performed a randomized phase III trial assessing dose intensification. PATIENTS AND METHODS Patients with BF but without evidence of macroscopic disease were randomly assigned to either 64 or 70 Gy. Three-dimensional conformal radiation therapy or intensity-modulated radiation therapy/rotational techniques were used. The primary end point was freedom from BF. Secondary end points were acute toxicity according to the National Cancer Institute Common Terminology Criteria for Adverse Events (version 4.0) and quality of life (QoL) according to the European Organisation for Research and Treatment of Cancer Quality of Life Questionnaires C30 and PR25. RESULTS Three hundred fifty patients were enrolled between February 2011 and April 2014. Three patients withdrew informed consent, and three patients were not eligible, resulting in 344 patients age 48 to 75 years in the safety population. Thirty patients (8.7%) had grade 2 and two patients (0.6%) had grade 3 genitourinary (GU) baseline symptoms. Acute grade 2 and 3 GU toxicity was observed in 22 patients (13.0%) and one patient (0.6%), respectively, with 64 Gy and in 29 patients (16.6%) and three patients (1.7%), respectively, with 70 Gy (P = .2). Baseline grade 2 GI toxicity was observed in one patient (0.6%). Acute grade 2 and 3 GI toxicity was observed in 27 patients (16.0%) and one patient (0.6%), respectively, with 64 Gy, and in 27 patients (15.4%) and four patients (2.3%), respectively, with 70 Gy (P = .8). Changes in early QoL were minor. Patients receiving 70 Gy reported a more pronounced and clinically relevant worsening in urinary symptoms (mean difference in change score between arms, 3.6; P = .02). CONCLUSION Dose-intensified SRT was associated with low rates of acute grade 2 and 3 GU and GI toxicity. The impact of dose-intensified SRT on QoL was minor, except for a significantly greater worsening in urinary symptoms.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

INTRODUCTION External beam radiotherapy (EBRT), with or without androgen deprivation therapy (ADT), is an established treatment option for nonmetastatic prostate cancer. Despite high-level evidence from several randomized trials, risk group stratification and treatment recommendations vary due to contradictory or inconclusive data, particularly with regard to EBRT dose prescription and ADT duration. Our aim was to investigate current patterns of practice in primary EBRT for prostate cancer in Switzerland. MATERIALS AND METHODS Treatment recommendations on EBRT and ADT for localized and locally advanced prostate cancer were collected from 23 Swiss radiation oncology centers. Written recommendations were converted into center-specific decision trees, and analyzed for consensus and differences using a dedicated software tool. Additionally, specific radiotherapy planning and delivery techniques from the participating centers were assessed. RESULTS The most commonly prescribed radiation dose was 78 Gy (range 70-80 Gy) across all risk groups. ADT was recommended for intermediate-risk patients for 6 months in over 80 % of the centers, and for high-risk patients for 2 or 3 years in over 90 % of centers. For recommendations on combined EBRT and ADT treatment, consensus levels did not exceed 39 % in any clinical scenario. Arc-based intensity-modulated radiotherapy (IMRT) is implemented for routine prostate cancer radiotherapy by 96 % of the centers. CONCLUSION Among Swiss radiation oncology centers, considerable ranges of radiotherapy dose and ADT duration are routinely offered for localized and locally advanced prostate cancer. In the vast majority of cases, doses and durations are within the range of those described in current evidence-based guidelines.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study investigates the relation of perceived arousal (continuous self-rating), autonomic nervous system activity (heart rate, heart rate variability) and musical characteristics (sound intensity, musical rhythm) upon listening to a complex musical piece. Twenty amateur musicians listened to two performances of Chopin's "Tristesse" with different rhythmic shapes. Besides conventional statistical methods for analyzing psychophysiological reactions (heart rate, respiration rate) and musical variables, semblance analysis was used. Perceived arousal correlated strongly with sound intensity; heart rate showed only a partial response to changes in sound intensity. Larger changes in heart rate were caused by the version with more rhythmic tension. The low-/high-frequency ratio of heart rate variability increased-whereas the high frequency component decreased-during music listening. We conclude that autonomic nervous system activity can be modulated not only by sound intensity but also by the interpreter's use of rhythmic tension. Semblance analysis enables us to track the subtle correlations between musical and physiological variables.