56 resultados para Insulin-resistance Atherosclerosis


Relevância:

90.00% 90.00%

Publicador:

Resumo:

We recently demonstrated that in vivo insulin resistance is not retained in cultured skeletal muscle cells. In the present study, we tested the hypothesis that treating cultured skeletal muscle cells with fatty acids has an effect on insulin action which differs between insulin-sensitive and insulin-resistant subjects. Insulin effects were examined in myotubes from 8 normoglycemic non-obese insulin-resistant and 8 carefully matched insulin-sensitive subjects after preincubation with or without palmitate, linoleate, and 2-bromo-palmitate. Insulin-stimulated glycogen synthesis decreased by 27 +/- 5 % after palmitate treatment in myotubes from insulin-resistant, but not from insulin-sensitive subjects (1.50 +/- 0.08-fold over basal vs. 1.81 +/- 0.09-fold, p = 0.042). Despite this observation, we did not find any impairment in the PI 3-kinase/PKB/GSK-3 pathway. Furthermore, insulin action was not affected by linoleate and 2-bromo-palmitate. In conclusion, our data provide preliminary evidence that insulin resistance of skeletal muscle does not necessarily involve primary defects in insulin action, but could represent susceptibility to the desensitizing effect of fatty acids and possibly other environmental or adipose tissue-derived factors.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The aim of these studies was to investigate whether insulin resistance is primary to skeletal muscle. Myoblasts were isolated from muscle biopsies of 8 lean insulin-resistant and 8 carefully matched insulin-sensitive subjects (metabolic clearance rates as determined by euglycemic-hyperinsulinemic clamp: 5.8 +/- 0.5 vs. 12.3 +/- 1.7 ml x kg(-1) x min(-1), respectively; P < or = 0.05) and differentiated to myotubes. In these cells, insulin stimulation of glucose uptake, glycogen synthesis, insulin receptor (IR) kinase activity, and insulin receptor substrate 1-associated phosphatidylinositol 3-kinase (PI 3-kinase) activity were measured. Furthermore, insulin activation of protein kinase B (PKB) was compared with immunoblotting of serine residues at position 473. Basal glucose uptake (1.05 +/- 0.07 vs. 0.95 +/- 0.07 relative units, respectively; P = 0.49) and basal glycogen synthesis (1.02 +/- 0.11 vs. 0.98 +/- 0.11 relative units, respectively; P = 0.89) were not different in myotubes from insulin-resistant and insulin-sensitive subjects. Maximal insulin responsiveness of glucose uptake (1.35 +/- 0.03-fold vs. 1.41 +/- 0.05-fold over basal for insulin-resistant and insulin-sensitive subjects, respectively; P = 0.43) and glycogen synthesis (2.00 +/- 0.13-fold vs. 2.10 +/- 0.16-fold over basal for insulin-resistant and insulin-sensitive subjects, respectively; P = 0.66) were also not different. Insulin stimulation (1 nmol/l) of IR kinase and PI 3-kinase were maximal within 5 min (approximately 8- and 5-fold over basal, respectively), and insulin activation of PKB was maximal within 15 min (approximately 3.5-fold over basal). These time kinetics were not significantly different between groups. In summary, our data show that insulin action and signaling in cultured skeletal muscle cells from normoglycemic lean insulin-resistant subjects is not different from that in cells from insulin-sensitive subjects. This suggests an important role of environmental factors in the development of insulin resistance in skeletal muscle.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

AIMS/HYPOTHESIS: Inhibition of the signalling function of the human insulin receptor (HIR) is one of the principle mechanisms which induce cellular insulin resistance. It is speculated that serine residues in the insulin receptor beta-subunit are involved in receptor inhibition either as inhibitory phosphorylation sites or as part of receptor domains which bind inhibitory proteins or tyrosine phosphatases. As reported earlier we prepared 16 serine to alanine point mutations of the HIR and found that serine to alanine mutants HIR-994 and HIR-1023/25 showed increased tyrosine autophosphorylation when expressed in human embryonic kidney (HEK) 293 cells. In this study we examined whether these mutant receptors have a different susceptibility to inhibition by serine kinases or an altered tyrosine kinase activity. METHODS: Tyrosine kinase assay and transfection studies. RESULTS: In an in vitro kinase assay using IRS-1 as a substrate we could detect a higher intrinsic tyrosine kinase activity of both receptor constructs. Additionally, a higher capacity to phosphorylate the adapter protein Shc in intact cells was seen. To test the inhibition by serine kinases, the receptor constructs were expressed in HEK 293 cells together with IRS-1 and protein kinase C isoforms beta2 and theta. Phorbol ester stimulation of these cells reduced wild-type receptor autophosphorylation to 58 % or 55 % of the insulin simulated state, respectively. This inhibitory effect was not observed with HIR-994 and HIR-1023/25, although all other tested HIR mutants showed similar inhibition induced by protein kinase C. CONCLUSION/INTERPRETATION: The data suggest that the HIR-domain which contains the serine residues 994 and 1023/25 is important for the inhibitory effect of protein kinase C isoforms beta2 and theta on insulin receptor autophosphorylation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The indications for screening and TSH threshold levels for treatment of subclinical hypothyroidism have remained a clinical controversy for over 20 years. Subclinical thyroid dysfunction is a common finding in the growing population of older adults, occurring in 10–15% among those age 65 and older, and may contribute to multiple common problems of older age, including cardiovascular disease, muscular impairment, mood problems, and cognitive dysfunction (1). In 2004, both the U.S. Preventive Services Task Force (2) and a clinical consensus group of experts (3) concluded that the existing evidence about the association between subclinical hypothyroidism and cardiovascular risks, primarily cross-sectional or case-control studies (4), was insufficient. For example, a frequently cited analysis from the Rotterdam study found a cross-sectional association between subclinical hypothyroidism and atherosclerosis, as measured by abdominal aortic calcification (odds ratio, 1.7; 95% confidence interval [CI], 1.1–2.6) and prevalent myocardial infarction (MI) (odds ratio, 2.3; 95% CI, 1.3–4.0) (5). Conversely, the prospective part of this study included only 16 incident MIs; the hazard ratio (HR) for subclinical hypothyroidism was 2.50, with broad 95% CIs (0.70–9.10). Potential mechanisms for the associations with cardiovascular diseases among adults with subclinical hypothyroidism include elevated cholesterol levels, inflammatory markers, raised homocysteine, increased oxidative stress, insulin resistance, increased systemic vascular resistance, arterial stiffness, altered endothelial function, and activation of thrombosis and hypercoagulability that have all been reported to be associated with subclinical hypothyroidism (1, 6).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A complex interaction among metabolic factors, adipose tissue lipolysis, oxidative stress, and insulin resistance results in a deleterious process that may link nonalcoholic fatty liver disease (NAFLD) with severe cardiovascular (CV) outcomes. Patients with NAFLD are at higher risk of atherosclerosis, new onset of CV events, and overall mortality. The strong association between NAFLD and CV disease should affect clinical practice, with screening and surveillance of patients with NAFLD. This review discusses the data linking these major diseases.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The metabolic disorders that predispose patients to NASH (non-alcoholic steatohepatitis) include insulin resistance and obesity. Repeated hypoxic events, such as occur in obstructive sleep apnoea syndrome, have been designated as a risk factor in the progression of liver disease in such patients, but the mechanism is unclear, in particular the role of hypoxia. Therefore we studied the influence of hypoxia on the development and progression of steatohepatitis in an experimental mouse model. Mice with a hepatocellular-specific deficiency in the Pten (phosphatase and tensin homologue deleted on chromosome 10) gene, a tumour suppressor, were exposed to a 10% O2 (hypoxic) or 21% O2 (control) atmosphere for 7 days. Haematocrit, AST (aspartate aminotransferase), glucose, triacylglycerols (triglycerides) and insulin tolerance were measured in blood. Histological lesions were quantified. Expression of genes involved in lipogenesis and mitochondrial beta-oxidation, as well as FOXO1 (forkhead box O1), hepcidin and CYP2E1 (cytochrome P450 2E1), were analysed by quantitative PCR. In the animals exposed to hypoxia, the haematocrit increased (60+/-3% compared with 50+/-2% in controls; P<0.01) and the ratio of liver weight/body weight increased (5.4+/-0.2% compared with 4.7+/-0.3% in the controls; P<0.01). Furthermore, in animals exposed to hypoxia, steatosis was more pronounced (P<0.01), and the NAS [NAFLD (non-alcoholic fatty liver disease) activity score] (8.3+/-2.4 compared with 2.3+/-10.7 in controls; P<0.01), serum AST, triacylglycerols and glucose were higher. Insulin sensitivity decreased in mice exposed to hypoxia relative to controls. The expression of the lipogenic genes SREBP-1c (sterol-regulatory-element-binding protein-1c), PPAR-gamma (peroxisome-proliferator-activated receptor-gamma), ACC1 (acetyl-CoA carboxylase 1) and ACC2 (acetyl-CoA carboxylase 2) increased significantly in mice exposed to hypoxia, whereas mitochondria beta-oxidation genes [PPAR-alpha (peroxisome-proliferator-activated receptor-alpha) and CPT-1 (carnitine palmitoyltransferase-1)] decreased significantly. In conclusion, the findings of the present study demonstrate that hypoxia alone aggravates and accelerates the progression of NASH by up-regulating the expression of lipogenic genes, by down-regulating genes involved in lipid metabolism and by decreasing insulin sensitivity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Intramyocellular lipids (IMCL) are flexible fuel stores that are depleted by physical exercise and replenished by fat intake. IMCL or their degradation products are thought to interfere with insulin signaling thereby contributing to insulin resistance. From a practical point of view it is desirable to deplete IMCL prior to replenishing them. So far, it is not clear for how long and at which intensity subjects have to exercise in order to deplete IMCL. We therefore aimed at developing a standardized exercise protocol that is applicable to subjects over a broad range of exercise capacity and insulin sensitivity and allows measuring reliably reduced IMCL levels.Twelve male subjects, including four diabetes type 2 patients, with wide ranges of exercise capacity (VO(2)peak per total body weight 27.9-55.8 ml x kg(-1) x min(-1)), insulin sensitivity (glucose infusion rate per lean body mass 4.7-15.3 mg x min(-1) x kg(-1)), and BMI (21.7-31.5 kg x m(-2)), respectively, were enrolled. Using (1)H magnetic resonance spectroscopy ((1)H-MRS), IMCL was measured in m.tibialis anterior and m.vastus intermedius before and during a depletion protocol of a week, consisting of a moderate additional physical activity (1 h daily at 60% VO(2)peak) and modest low-fat (10-15%) diet.Absolute IMCL-levels were significantly reduced in both muscles during the first 3 days and stayed constant for the next 3 days of an identical diet/exercise-scheme. These reduced IMCL levels were independent of insulin sensitivity, yet a tendency to lower depleted IMCL levels has been observed in subjects with higher VO(2)peak.The proposed protocol is feasible in subjects with large differences in exercise capacity, insulin sensitivity, and BMI, leading to reduced IMCL levels that neither depend on the exact duration of the depletion protocol nor on insulin sensitivity. This allows for a standardized preparation of IMCL levels either for correlation with other physiological parameters or for replenishment studies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Patients with GH deficiency (GHD) are insulin resistant with an increase in visceral fat mass (FM). Whether this holds true when sedentary control subjects (CS) are matched for waist has not been documented. GH replacement therapy (GHRT) results in a decrease in FM. Whether the decrease in FM is mainly related to a reduction in visceral FM remains to be proven. The aim was to separately assess visceral and subcutaneous FM in relation to insulin resistance (IR) in GHD patients before and after GHRT and in sedentary CS.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The purpose of this study was to assess the expression profile of genes with potential role in the development of insulin resistance (adipokines, cytokines/chemokines, estrogen receptors) in subcutaneous adipose tissue (SAT), visceral adipose tissue (VAT) and placenta of pregnant women with gestational diabetes mellitus (GDM) and age-matched women with physiological pregnancy at the time of Caesarean section. qRT-PCR was used for expression analysis of the studied genes. Leptin gene expression in VAT of GDM group was significantly higher relative to control group. Gene expressions of interleukin-6 and interleukin-8 were significantly increased, whereas the expressions of genes for estrogen receptors alpha and beta were significantly reduced in SAT of GDM group relative to controls, respectively. We found no significant differences in the expression of any genes of interest (LEP, RETN, ADIPOR1, ADIPOR2, TNF-alpha, CD68, IL-6, IL-8, ER alpha, ER beta) in placentas of women with GDM relative to controls. We conclude that increased expression of leptin in visceral adipose depot together with increased expressions of proinflammatory cytokines and reduced expressions of estrogen receptors in subcutaneous fat may play a role in the etiopathogenesis of GDM.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background PCSK9 (Proprotein Convertase Subtilisin Kexin type 9) is a circulating protein that promotes hypercholesterolemia by decreasing hepatic LDL receptor protein. Under non interventional conditions, its expression is driven by sterol response element binding protein 2 (SREBP2) and follows a diurnal rhythm synchronous with cholesterol synthesis. Plasma PCSK9 is associated to LDL-C and to a lesser extent plasma triglycerides and insulin resistance. We aimed to verify the effect on plasma PCSK9 concentrations of dietary interventions that affect these parameters. Methods We performed nutritional interventions in young healthy male volunteers and offspring of type 2 diabetic (OffT2D) patients that are more prone to develop insulin resistance, including: i) acute post-prandial hyperlipidemic challenge (n=10), ii) 4 days of high-fat (HF) or high-fat/high-protein (HFHP) (n=10), iii) 7 (HFruc1, n=16) or 6 (HFruc2, n=9) days of hypercaloric high-fructose diets. An acute oral fat load was also performed in two patients bearing the R104C-V114A loss-of-function (LOF) PCSK9 mutation. Plasma PCSK9 concentrations were measured by ELISA. For the HFruc1 study, intrahepatocellular (IHCL) and intramyocellular lipids were measured by 1H magnetic resonance spectroscopy. Hepatic and whole-body insulin sensitivity was assessed with a two-step hyperinsulinemic-euglycemic clamp (0.3 and 1.0 mU.kg-1.min-1). Findings HF and HFHP short-term diets, as well as an acute hyperlipidemic oral load, did not significantly change PCSK9 concentrations. In addition, post-prandial plasma triglyceride excursion was not altered in two carriers of PCSK9 LOF mutation compared with non carriers. In contrast, hypercaloric 7-day HFruc1 diet increased plasma PCSK9 concentrations by 28% (p=0.05) in healthy volunteers and by 34% (p=0.001) in OffT2D patients. In another independent study, 6-day HFruc2 diet increased plasma PCSK9 levels by 93% (p<0.0001) in young healthy male volunteers. Spearman’s correlations revealed that plasma PCSK9 concentrations upon 7-day HFruc1 diet were positively associated with plasma triglycerides (r=0.54, p=0.01) and IHCL (r=0.56, p=0.001), and inversely correlated with hepatic (r=0.54, p=0.014) and whole-body (r=−0.59, p=0.0065) insulin sensitivity. Conclusions Plasma PCSK9 concentrations vary minimally in response to a short term high-fat diet and they are not accompanied with changes in cholesterolemia upon high-fructose diet. Short-term high-fructose intake increased plasma PCSK9 levels, independent on cholesterol synthesis, suggesting a regulation independent of SREBP-2. Upon this diet, PCSK9 is associated with insulin resistance, hepatic steatosis and plasma triglycerides.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

NASH associates steatosis with parenchymal inflammation and signs of hepatocellular injuy and even apoptosis. This leads in a minority of patients to fibrosis and in the long term to cirrhosis. NASH regularly occurs in a metabolic context characterized by insulin resistance. Several drugs have been tested in randomized controlled studies. Glitazones improve insulin resistance and also NASH, but are associated with side effects particularly unwelcome in NASH patients. Ursodesoxycholic acid, an hydrophilic biliary acid with hepatoprotective properties, does not improve the histological lesions of NASH. Vitamin E is the only compound which showed so far a positive effect without relevant side effects. However, it is too early to recommend its long-term use in this indication. Finally, the best treatment is not with drugs, but relies on behavioural changes: NASH patients should regularly exercise!

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Effectively assessing subtle hepatic metabolic functions by novel non-invasive tests might be of clinical utility in scoring NAFLD (non-alcoholic fatty liver disease) and in identifying altered metabolic pathways. The present study was conducted on 39 (20 lean and 19 obese) hypertransaminasemic patients with histologically proven NAFLD {ranging from simple steatosis to severe steatohepatitis [NASH (non-alcoholic steatohepatitis)] and fibrosis} and 28 (20 lean and eight overweight) healthy controls, who underwent stable isotope breath testing ([(13)C]methacetin and [(13)C]ketoisocaproate) for microsomal and mitochondrial liver function in relation to histology, serum hyaluronate, as a marker of liver fibrosis, and body size. Compared with healthy subjects and patients with simple steatosis, NASH patients had enhanced methacetin demethylation (P=0.001), but decreased (P=0.001) and delayed (P=0.006) ketoisocaproate decarboxylation, which was inversely related (P=0.001) to the degree of histological fibrosis (r=-0.701), serum hyaluronate (r=-0.644) and body size (r=-0.485). Ketoisocaproate decarboxylation was impaired further in obese patients with NASH, but not in patients with simple steatosis and in overweight controls. NASH and insulin resistance were independently associated with an abnormal ketoisocaproate breath test (P=0.001). The cut-off value of 9.6% cumulative expired (13)CO(2) for ketoisocaproate at 60 min was associated with the highest prediction (positive predictive value, 0.90; negative predictive value, 0.73) for NASH, yielding an overall sensitivity of 68% and specificity of 94%. In conclusion, both microsomal and mitochondrial functions are disturbed in NASH. Therefore stable isotope breath tests may usefully contribute to a better and non-invasive characterization of patients with NAFLD.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Thiazolidinediones (TZDs) such as pioglitazone and rosiglitazone are widely used as insulin sensitizers in the treatment of type 2 diabetes. In diabetic women with polycystic ovary syndrome, treatment with pioglitazone or rosiglitazone improves insulin resistance and hyperandrogenism, but the mechanism by which TZDs down-regulate androgen production is unknown. Androgens are synthesized in the human gonads as well as the adrenals. We studied the regulation of androgen production by analyzing the effect of pioglitazone and rosiglitazone on steroidogenesis in human adrenal NCI-H295R cells, an established in vitro model of steroidogenesis of the human adrenal cortex. Both TZDs changed the steroid profile of the NCI-H295R cells and inhibited the activities of P450c17 and 3betaHSDII, key enzymes of androgen biosynthesis. Pioglitazone but not rosiglitazone inhibited the expression of the CYP17 and HSD3B2 genes. Likewise, pioglitazone repressed basal and 8-bromo-cAMP-stimulated activities of CYP17 and HSD3B2 promoter reporters in NCI-H295R cells. However, pioglitazone did not change the activity of a cAMP-responsive luciferase reporter, indicating that it does not influence cAMP/protein kinase A/cAMP response element-binding protein pathway signaling. Although peroxisome proliferator-activated receptor gamma (PPARgamma) is the nuclear receptor for TZDs, suppression of PPARgamma by small interfering RNA technique did not alter the inhibitory effect of pioglitazone on CYP17 and HSD3B2 expression, suggesting that the action of pioglitazone is independent of PPARgamma. On the other hand, treatment of NCI-H295R cells with mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) inhibitor 2-(2-amino-3-methoxyphenyl)-4H-1-benzopyran-4-one (PD98059) enhanced promoter activity and expression of CYP17. This effect was reversed by pioglitazone treatment, indicating that the MEK/ERK signaling pathway plays a role in regulating androgen biosynthesis by pioglitazone.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Overweight and obesity in children and adolescents have become a major public health problem in recent years throughout the world. The medical consequences of obesity may manifest as an increase in the prevalence of the metabolic syndrome in children and adolescents putting them at increased risk for future cardiovascular diseases. Obesity can cause insulin resistance and might disturb glucose homeostasis eventually leading to type 2 diabetes in susceptible patients. Insulin resistance is also involved in the pathogenesis of dyslipidemia in obese children characteristically presenting as hypertriglyceridemia and low HDL cholesterol. Even elevated blood pressure might be present in obese kids. Here we present a 12-year-old boy diagnosed with the metabolic syndrome. The diagnostic criteria of the metabolic syndrome in children and adolescents are discussed. Thoughts about pathophysiology and therapeutic options are offered.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: Many HIV-infected patients on highly active antiretroviral therapy (HAART) experience metabolic complications including dyslipidaemia and insulin resistance, which may increase their coronary heart disease (CHD) risk. We developed a prognostic model for CHD tailored to the changes in risk factors observed in patients starting HAART. METHODS: Data from five cohort studies (British Regional Heart Study, Caerphilly and Speedwell Studies, Framingham Offspring Study, Whitehall II) on 13,100 men aged 40-70 and 114,443 years of follow up were used. CHD was defined as myocardial infarction or death from CHD. Model fit was assessed using the Akaike Information Criterion; generalizability across cohorts was examined using internal-external cross-validation. RESULTS: A parametric model based on the Gompertz distribution generalized best. Variables included in the model were systolic blood pressure, total cholesterol, high-density lipoprotein cholesterol, triglyceride, glucose, diabetes mellitus, body mass index and smoking status. Compared with patients not on HAART, the estimated CHD hazard ratio (HR) for patients on HAART was 1.46 (95% CI 1.15-1.86) for moderate and 2.48 (95% CI 1.76-3.51) for severe metabolic complications. CONCLUSIONS: The change in the risk of CHD in HIV-infected men starting HAART can be estimated based on typical changes in risk factors, assuming that HRs estimated using data from non-infected men are applicable to HIV-infected men. Based on this model the risk of CHD is likely to increase, but increases may often be modest, and could be offset by lifestyle changes.