106 resultados para Inquisitiones post mortem
Resumo:
OBJECTIVE: The objective of our study was to establish optimal perfusion conditions for high-resolution postmortem angiography that would permit dynamic visualization of the arterial and venous systems. MATERIALS AND METHODS: Cadavers of two dogs and one cat were perfused with diesel oil through a peristaltic pump. The lipophilic contrast agent Lipiodol Ultra Fluide was then injected, and angiography was performed. The efficiency of perfusion was evaluated in the chick chorioallantoic membrane. RESULTS: Vessels could be seen up to the level of the smaller supplying and draining vessels. Hence, both the arterial and the venous sides of the vascular system could be distinguished. The chorioallantoic membrane assay revealed that diesel oil enters microvessels up to 50 microm in diameter and that it does not penetrate the capillary network. CONCLUSION: After establishing a postmortem circulation by diesel oil perfusion, angiography can be performed by injection of Lipiodol Ultra Fluide. The resolution of the images obtained up to 3 days after death is comparable to that achieved in clinical angiography.
Resumo:
The post-mortem use of modern imaging techniques such as multislice computed tomography (MSCT) is becoming increasingly important as an aid for conventional autopsy. This article presents a case of a 4-month-old boy who died from sudden infant death syndrome (SIDS) with intravascular gas after an intraosseus medication application documented by post-mortem MSCT. It is most likely that the gas entered the body during resuscitation. This case emphasises the advantage of post-mortem imaging as a complementary aid for the autopsy. We conclude that during emergency treatment, the medical staff should be aware of the possibility of causing a gas embolism following intraosseus medication. Resuscitation with an inserted, disconnected intraosseous needle should be avoided.
Resumo:
PURPOSE: Currently, in forensic medicine cross-sectional imaging gains recognition and a wide use as a non-invasive examination approach. Today, computed tomography (CT) or magnetic resonance imaging that are available for patients are unable to provide tissue information on the cellular level in a non-invasive manner and also diatom detection, DNA, bacteriological, chemical toxicological and other specific tissue analyses are impossible using radiology. We hypothesised that post-mortem minimally invasive tissue sampling using needle biopsies under CT guidance might significantly enhance the potential of virtual autopsy. The purpose of this study was to test the use of a clinically approved biopsy needle for minimally invasive post-mortem sampling of tissue specimens under CT guidance. MATERIAL AND METHODS: ACN III biopsy core needles 14 gauge x 160 mm with automatic pistol device were used on three bodies dedicated to research from the local anatomical institute. Tissue probes from the brain, heart, lung, liver, spleen, kidney and muscle tissue were obtained under CT fluoroscopy. RESULTS: CT fluoroscopy enabled accurate placement of the needle within the organs and tissues. The needles allowed for sampling of tissue probes with a mean width of 1.7 mm (range 1.2-2 mm) and the maximal length of 20 mm at all locations. The obtained tissue specimens were of sufficient size and adequate quality for histological analysis. CONCLUSION: Our results indicate that, similar to the clinical experience but in many more organs, the tissue specimens obtained using the clinically approved biopsy needle are of a sufficient size and adequate quality for a histological examination. We suggest that post-mortem biopsy using the ACN III needle under CT guidance may become a reliable method for targeted sampling of tissue probes of the body.
Resumo:
Multislice-computed tomography (MSCT) and magnetic resonance imaging (MRI) are increasingly used for forensic purposes. Based on broad experience in clinical neuroimaging, post-mortem MSCT and MRI were performed in 57 forensic cases with the goal to evaluate the radiological methods concerning their usability for forensic head and brain examination. An experienced clinical radiologist evaluated the imaging data. The results were compared to the autopsy findings that served as the gold standard with regard to common forensic neurotrauma findings such as skull fractures, soft tissue lesions of the scalp, various forms of intracranial hemorrhage or signs of increased brain pressure. The sensitivity of the imaging methods ranged from 100% (e.g., heat-induced alterations, intracranial gas) to zero (e.g., mediobasal impression marks as a sign of increased brain pressure, plaques jaunes). The agreement between MRI and CT was 69%. The radiological methods prevalently failed in the detection of lesions smaller than 3mm of size, whereas they were generally satisfactory concerning the evaluation of intracranial hemorrhage. Due to its advanced 2D and 3D post-processing possibilities, CT in particular possessed certain advantages in comparison with autopsy with regard to forensic reconstruction. MRI showed forensically relevant findings not seen during autopsy in several cases. The partly limited sensitivity of imaging that was observed in this retrospective study was based on several factors: besides general technical limitations it became apparent that clinical radiologists require a sound basic forensic background in order to detect specific signs. Focused teaching sessions will be essential to improve the outcome in future examinations. On the other hand, the autopsy protocols should be further standardized to allow an exact comparison of imaging and autopsy data. In consideration of these facts, MRI and CT have the power to play an important role in future forensic neuropathological examination.
Resumo:
Radiological identification is important in forensic medicine. Identification using comparison of individualising structures with ante- and post-mortem conventional radiographs has been known for a long time. New radiological procedures such as computed tomography (CT) and magnetic resonance imaging (MRI) are being increasingly used for identification. In this paper, a new comparative approach using various radiological methods is described and its application demonstrated. This new approach is the comparison of ante-mortem conventional radiographs with projected images calculated from post-mortem CT data. The identification procedure will be illustrated with reference to the frontal sinus and the pelvis.
Resumo:
The aim of this study was to identify the classic autopsy signs of drowning in post-mortem multislice computed tomography (MSCT). Therefore, the post-mortem pre-autopsy MSCT- findings of ten drowning cases were correlated with autopsy and statistically compared with the post-mortem MSCT of 20 non-drowning cases. Fluid in the airways was present in all drowning cases. Central aspiration in either the trachea or the main bronchi was usually observed. Consecutive bronchospasm caused emphysema aquosum. Sixty percent of drowning cases showed a mosaic pattern of the lung parenchyma due to regions of hypo- and hyperperfused lung areas of aspiration. The resorption of fresh water in the lung resulted in hypodensity of the blood representing haemodilution and possible heart failure. Swallowed water distended the stomach and duodenum; and inflow of water filled the paranasal sinuses (100%). All the typical findings of drowning, except Paltau's spots, were detected using post-mortem MSCT, and a good correlation of MSCT and autopsy was found. The advantage of MSCT was the direct detection of bronchospasm, haemodilution and water in the paranasal sinus, which is rather complicated or impossible at the classical autopsy.
Resumo:
Homicides with a survival of several days are not uncommon in forensic routine work. Reconstructions of these cases by autopsy alone are very difficult and may occasionally lead to unsatisfying results. For the medico-legal reconstruction of these cases, ante-mortem and post-mortem radiological imaging should always be included in the expertise. We report on a case of fatal penetrating stab wounds to the skull in which a case reconstruction was only possible by combining the radiological ante- and post-mortem data with the autopsy findings.
Resumo:
Knowledge of the time interval from death (post-mortem interval, PMI) has an enormous legal, criminological and psychological impact. Aiming to find an objective method for the determination of PMIs in forensic medicine, 1H-MR spectroscopy (1H-MRS) was used in a sheep head model to follow changes in brain metabolite concentrations after death. Following the characterization of newly observed metabolites (Ith et al., Magn. Reson. Med. 2002; 5: 915-920), the full set of acquired spectra was analyzed statistically to provide a quantitative estimation of PMIs with their respective confidence limits. In a first step, analytical mathematical functions are proposed to describe the time courses of 10 metabolites in the decomposing brain up to 3 weeks post-mortem. Subsequently, the inverted functions are used to predict PMIs based on the measured metabolite concentrations. Individual PMIs calculated from five different metabolites are then pooled, being weighted by their inverse variances. The predicted PMIs from all individual examinations in the sheep model are compared with known true times. In addition, four human cases with forensically estimated PMIs are compared with predictions based on single in situ MRS measurements. Interpretation of the individual sheep examinations gave a good correlation up to 250 h post-mortem, demonstrating that the predicted PMIs are consistent with the data used to generate the model. Comparison of the estimated PMIs with the forensically determined PMIs in the four human cases shows an adequate correlation. Current PMI estimations based on forensic methods typically suffer from uncertainties in the order of days to weeks without mathematically defined confidence information. In turn, a single 1H-MRS measurement of brain tissue in situ results in PMIs with defined and favorable confidence intervals in the range of hours, thus offering a quantitative and objective method for the determination of PMIs.
Resumo:
INTRODUCTION: Recent advances in medical imaging have brought post-mortem minimally invasive computed tomography (CT) guided percutaneous biopsy to public attention. AIMS: The goal of the following study was to facilitate and automate post-mortem biopsy, to suppress radiation exposure to the investigator, as may occur when tissue sampling under computer tomographic guidance, and to minimize the number of needle insertion attempts for each target for a single puncture. METHODS AND MATERIALS: Clinically approved and post-mortem tested ACN-III biopsy core needles (14 gauge x 160 mm) with an automatic pistol device (Bard Magnum, Medical Device Technologies, Denmark) were used for probe sampling. The needles were navigated in gelatine/peas phantom, ex vivo porcine model and subsequently in two human bodies using a navigation system (MEM centre/ISTB Medical Application Framework, Marvin, Bern, Switzerland) with guidance frame and a CT (Emotion 6, Siemens, Germany). RESULTS: Biopsy of all peas could be performed within a single attempt. The average distance between the inserted needle tip and the pea centre was 1.4mm (n=10; SD 0.065 mm; range 0-2.3 mm). The targets in the porcine liver were also accurately punctured. The average of the distance between the needle tip and the target was 0.5 mm (range 0-1 mm). Biopsies of brain, heart, lung, liver, pancreas, spleen, and kidney were performed on human corpses. For each target the biopsy needle was only inserted once. The examination of one body with sampling of tissue probes at the above-mentioned locations took approximately 45 min. CONCLUSIONS: Post-mortem navigated biopsy can reliably provide tissue samples from different body locations. Since the continuous update of positional data of the body and the biopsy needle is performed using optical tracking, no control CT images verifying the positional data are necessary and no radiation exposure to the investigator need be taken into account. Furthermore, the number of needle insertions for each target can be minimized to a single one with the ex vivo proven adequate accuracy and, in contrast to conventional CT guided biopsy, the insertion angle may be oblique. Navigation for minimally invasive tissue sampling is a useful addition to post-mortem CT guided biopsy.
Resumo:
As the auditory ossicles are difficult to display without harming them in conventional autopsies, lesions of these minute bones and the ossicular chain are regularly missed. In this study, the method of choice in clinical medicine for the examination of such lesions, namely multislice computed tomography, was applied to 100 corpses. The hereby obtained results regarding ossicle luxation and petrous bone fracture indicated that the lesions were not dependant on the amount, but rather on the type of energy inflicted to the head.
Resumo:
Fatal falls from great height are a frequently encountered setting in forensic pathology. They present--by virtue of a calculable energy transmission to the body--an ideal model for the assessment of the effects of blunt trauma to a human body. As multislice computed tomography (MSCT) has proven not only to be invaluable in clinical examinations, but also to be a viable tool in post-mortem imaging, especially in the field of osseous injuries, we performed a MSCT scan on 20 victims of falls from great height. We hereby detected fractures and their distributions were compared with the impact energy. Our study suggests a marked increase of extensive damage to different body regions at about 20 kJ and more. The thorax was most often affected, regardless of the amount of impacting energy and the primary impact site. Cranial fracture frequency displayed a biphasic distribution with regard to the impacting energy; they were more frequent in energies of less than 10, and more than 20 kJ, but rarer in the intermediate energy group, namely that of 10-20 kJ.
Resumo:
Modern cross-sectional imaging techniques are being increasingly implemented in forensic pathology. These methods may serve as an adjuvant to classic forensic autopsies or even replace them altogether in the future. In order to assess the practicability of such a method, namely post-mortem multislice computed tomography (MSCT) in fatal gunshot injuries, 22 corpses underwent such an examination prior to forensic autopsy. The cardinal questions of the location of entrance and exit wounds, the detection of bullets and bullet fragments in the body, the bullet course, inflicted injuries and cause of death were addressed at MSCT and autopsy. The results of the two techniques revealed that post-mortem MSCT can answer these questions reliably and is therefore a useful tool in the assessment of such injuries.
Resumo:
Modern cross-sectional imaging techniques are being increasingly implemented in forensic pathology. In order to assess the practicability of such a method, namely post-mortem multislice computed tomography (MSCT) in cases of fatal cut and stab injuries, 12 corpses underwent such an examination prior to forensic autopsy. The questions regarding detection of foreign bodies, wound channels, skeletal and organ injuries, as well as the cause of death were addressed at MSCT and autopsy. The results of the two techniques revealed that post-mortem MSCT a useful tool in the assessment of such injuries.
Resumo:
Fractures and soft-tissue injuries of the neck are of great importance in forensic pathology, as they help in assessing whether strangulation took place, and if so, how severely. In this study, we examined the usefulness of post-mortem imaging with multislice computed tomography (MSCT) in detecting lesions of the laryngohyoid structures and the surrounding soft-tissues. For this purpose, we examined MSCT images of the neck of eight deceased persons who had suffered different types of strangulation and compared the findings with those obtained at the subsequent forensic autopsy. In six of the eight cases (75%), the fracture findings at autopsy were concordant with those found with MSCT. In the two non-congruent cases, MSCT revealed fractures, which were not discovered at autopsy. Soft-tissue haemorrhages were detected by autopsy in five cases, but only in one case with MSCT. MSCT does not suffice in detecting soft-tissue injuries. These preliminary results are promising regarding the detection of fractures in strangulation cases. If these results can be confirmed in larger studies, we believe that post-mortem MSCT may serve - in combination with a thorough external examination and a profound incident-scene investigation - as a useful decision-making tool regarding the necessity of further examinations, i.e. autopsy.