34 resultados para Indian seafood


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Literature on bird spider or tarantula bites (Theraphosidae) is rare. This is astonishing as they are coveted pets and interaction with their keepers (feeding, cleaning the terrarium or taking them out to hold) might increase the possibility for bites. Yet, this seems to be a rare event and might be why most theraphosids are considered to be harmless, even though the urticating hairs of many American species can cause disagreeable allergic reactions. We are describing a case of a verified bite by an Indian ornamental tree spider (Poecilotheria regalis), where the patient developed severe, long lasting muscle cramps several hours after the bite. We present a comprehensive review of the literature on bites of these beautiful spiders and conclude that a delayed onset of severe muscle cramps, lasting for days, is characteristic for Poecilotheria bites. We discuss Poecilotheria species as an exception from the general assumption that theraphosid bites are harmless to humans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Four stalagmites covering the last 7.0 ka were sampled on Socotra, an island in the northern Indian Ocean to investigate the evolution of the northeast Indian Ocean Monsoon (IOM) since the mid Holocene. On Socotra, rain is delivered at the start of the southwest IOM in May–June and at the start of the northeast IOM from September to December. The Haggeher Mountains act as a barrier forcing precipitation brought by the northeast winds to fall preferentially on the eastern side of the island, where the studied caves are located. δ18O and δ13C and Mg/Ca and Sr/Ca signals in the stalagmites reflect precipitation amounts brought by the northeast winds. For stalagmite STM6, this amount effect is amplified by kinetic effects during calcite deposition. Combined interpretation of the stalagmites' signals suggest a weakening of the northeast precipitation between 6.0 and 3.8 ka. After 3.8 ka precipitation intensities remain constant with two superimposed drier periods, between 0 and 0.6 ka and from 2.2 to 3.8 ka. No link can be established with Greenland ice cores and with the summer IOM variability. In contrast to the stable northeast rainy season suggested by the records in this study, speleothem records from western Socotra indicate a wettening of the southwest rainy season on Socotra after 4.4 ka. The local wettening of western Socotra could relate to a more southerly path (more over the Indian Ocean) taken by the southwest winds. Stalagmite STM5, sampled at the fringe between both rain areas displays intermediate δ18O values. After 6.2 ka, similar precipitation changes are seen between eastern Socotra and northern Oman indicating that both regions are affected similarly by the monsoon. Different palaeoclimatologic records from the Arabian Peninsula currently located outside the ITCZ migration pathway display an abrupt drying around 6 ka due to their disconnection from the southwest rain influence. Records that are nowadays still receiving rain by the southwest winds, suggest a more gradual drying reflecting the weakening of the southwest monsoon.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The geologic structures and metamorphic zonation of the northwestern Indian Himalaya contrast significantly with those in the central and eastern parts of the range, where the high-grade metamorphic rocks of the High Himalayan Crystalline (HHC) thrust southward over the weakly metamorphosed sediments of the Lesser Himalaya along the Main Central Thrust (MCT). Indeed, the hanging wall of the MCT in the NW Himalaya mainly consists of the greenschist facies metasediments of the Chamba zone, whereas HHC high-grade rocks are exposed more internally in the range as a large-scale dome called the Gianbul dome. This Gianbul dome is bounded by two oppositely directed shear zones, the NE-dipping Zanskar Shear Zone (ZSZ) on the northern flank and the SW-dipping Miyar Shear Zone (MSZ) on the southern limb. Current models for the emplacement of the HHC in NW India as a dome structure differ mainly in terms of the roles played by both the ZSZ and the MSZ during the tectonothermal evolution of the HHC. In both the channel flow model and wedge extrusion model, the ZSZ acts as a backstop normal fault along which the high-grade metamorphic rocks of the HHC of Zanskar are exhumed. In contrast, the recently proposed tectonic wedging model argues that the ZSZ and the MSZ correspond to one single detachment system that operates as a subhorizontal backthrust off of the MCT. Thus, the kinematic evolution of the two shear zones, the ZSZ and the MSZ, and their structural, metamorphic and chronological relations appear to be diagnostic features for discriminating the different models. In this paper, structural, metamorphic and geochronological data demonstrate that the MSZ and the ZSZ experienced two distinct kinematic evolutions. As such, the data presented in this paper rule out the hypothesis that the MSZ and the ZSZ constitute one single detachment system, as postulated by the tectonic wedging model. Structural, metamorphic and geochronological data are used to present an alternative tectonic model for the large-scale doming in the NW Indian Himalaya involving early NE-directed tectonics, weakness in the upper crust, reduced erosion at the orogenic front and rapid exhumation along both the ZSZ and the MSZ.