214 resultados para Ice
Resumo:
Perennial snow and ice (PSI) extent is an important parameter of mountain environments with regard to its involvement in the hydrological cycle and the surface energy budget. We investigated interannual variations of PSI in nine mountain regions of interest (ROI) between 2000 and 2008. For that purpose, a novel MODIS data set processed at the Canada Centre for Remote Sensing at 250 m spatial resolution was utilized. The extent of PSI exhibited significant interannual variations, with coefficients of variation ranging from 5% to 81% depending on the ROI. A strong negative relationship was found between PSI and positive degree-days (threshold 0°C) during the summer months in most ROIs, with linear correlation coefficients (r) being as low as r = −0.90. In the European Alps and Scandinavia, PSI extent was significantly correlated with annual net glacier mass balances, with r = 0.91 and r = 0.85, respectively, suggesting that MODIS-derived PSI extent may be used as an indicator of net glacier mass balances. Validation of PSI extent in two land surface classifications for the years 2000 and 2005, GLC-2000 and Globcover, revealed significant discrepancies of up to 129% for both classifications. With regard to the importance of such classifications for land surface parameterizations in climate and land surface process models, this is a potential source of error to be investigated in future studies. The results presented here provide an interesting insight into variations of PSI in several ROIs and are instrumental for our understanding of sensitive mountain regions in the context of global climate change assessment.
Resumo:
Forest fires play a key role in the global carbon cycle and thus, can affect regional and global climate. Although fires in extended areas of Russian boreal forests have a considerable influence on atmospheric greenhouse gas and soot concentrations, estimates of their impact on climate are hampered by a lack of data on the history of forest fires. Especially regions with strong continental climate are of high importance due to an intensified development of wildfires. In this study we reconstruct the fire history of Southern Siberia during the past 750 years using ice-core based nitrate, potassium, and charcoal concentration records from Belukha glacier in the continental Siberian Altai. A period of exceptionally high forest-fire activity was observed between AD 1600 and 1680, following an extremely dry period AD 1540-1600. Ice-core pollen data suggest distinct forest diebacks and the expansion of steppe in response to dry climatic conditions. Coherence with a paleoenvironmental record from the 200 km distant Siberian lake Teletskoye shows that the vegetational shift AD 1540-1680, the increase in fire activity AD 1600-1680, and the subsequent recovery of forests AD 1700 were of regional significance. Dead biomass accumulation in response to drought and high temperatures around AD 1600 probably triggered maximum forest-fire activity AD 1600-1680. The extreme dry period in the 16th century was also observed at other sites in Central Asia and is possibly associated with a persistent positive mode of the Pacific Decadal Oscillation (PDO). No significant increase in biomass burning occurred in the Altai region during the last 300 years, despite strongly increasing temperatures and human activities. Our results imply that precipitation changes controlled fire-regime and vegetation shifts in the Altai region during the past 750 years. We conclude that high sensitivity of ecosystems to occasional decadal-scale drought events may trigger unprecedented environmental reorganizations under global-warming conditions.
Resumo:
Plutonium is present in the environment as a consequence of atmospheric nuclear tests, nuclear weapons production and industrial releases over the past 50 years. To study temporal trends, a high resolution Pu record was obtained by analyzing 52 discrete samples of an alpine firn/ice core from Colle Gnifetti (Monte Rosa, 4450 m a.s.l.), dating from 1945 to 1990. The 239Pu signal was recorded directly, without decontamination or preconcentration steps, using an Inductively Coupled Plasma - Sector Field Mass Spectrometer (ICP-SFMS) equipped with an high efficiency sample introduction system, thus requiring much less sample preparation than previously reported methods. The 239Pu profile reflects the three main periods of atmospheric nuclear weapons testing: the earliest peak lasted from 1954/55 to 1958 and was caused by the first testing period reaching a maximum in 1958. Despite a temporary halt of testing in 1959/60, the Pu concentration decreased only by half with respect to the 1958 peak due to long atmospheric residence times. In 1961/62 Pu concentrations rapidly increased reaching a maximum in 1963, which was about 40% more intense than the 1958 peak. After the signing of the "Limited Test Ban Treaty" between USA and USSR in 1964, Pu deposition decreased very sharply reaching a minimum in 1967. The third period (1967-1975) is characterized by irregular Pu concentrations with smaller peaks (about 20-30% of the 1964 peak) which might be related to the deposition of Saharan dust contaminated by the French nuclear tests of the 1960s. The data presented are in very good agreement with Pu profiles previously obtained from the Col du Dome ice core (by multi-collector ICP-MS) and Belukha ice core (by Accelerator Mass Spectrometry, AMS). Although a semi-quantitative method was employed here, the results are quantitatively comparable to previously published results.
Resumo:
A Mt. Everest ice core spanning 1860–2000 AD and analyzed at high resolution for black carbon (BC) using a Single Particle Soot Photometer (SP2) demonstrates strong seasonality, with peak concentrations during the winter-spring, and low concentrations during the summer monsoon season. BC concentrations from 1975–2000 relative to 1860–1975 have increased approximately threefold, indicating that BC from anthropogenic sources is being transported to high elevation regions of the Himalaya. The timing of the increase in BC is consistent with BC emission inventory data from South Asia and the Middle East, however since 1990 the ice core BC record does not indicate continually increasing BC concentrations. The Everest BC and dust records provide information about absorbing impurities that can contribute to glacier melt by reducing the albedo of snow and ice. There is no increasing trend in dust concentrations since 1860, and estimated surface radiative forcing due to BC in snow exceeds that of dust in snow. This suggests that a reduction in BC emissions may be an effective means to reduce the effect of absorbing impurities on snow albedo and melt, which affects Himalayan glaciers and the availability of water resources in major Asian rivers.
Resumo:
The fractionation of major sea-water ions, or deviation in their relative concentrations from Standard Mean Ocean Water ratios, has been frequently observed in sea ice. It is generally thought to be associated with precipitation of solid salts at certain eutectic temperatures. The variability found in bulk sea-ice samples indicates that the fractionation of ions depends on the often unknown thermal history of sea ice, which affects the structure of pore networks and fate of solid salts within them. Here we investigate the distribution of ions in Arctic sea ice that is a few weeks old with a reconstructible thermal history. We separate the centrifugable (interconnected) and entrapped (likely disconnected) contributions to the ice salinity and determine their ion fractionation signatures. The results indicate that differential diffusion of ions, rather than eutectic precipitation of cryohydrates, has led to significant ion fractionation. The finding emphasizes the role of coupled diffusive–convective salt transport through complex pore networks in shaping the biogeochemistry of sea ice.