47 resultados para Honey.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Honey has been discussed as a therapeutic option in wound healing since ancient time. It might be also an alternative to the commonly used antimicrobials in periodontitis treatment. The in-vitro study was aimed to determine the antimicrobial efficacy against Porphyromonas gingivalis as a major periodontopathogen. METHODS One Manuka and one domestic beekeeper honey have been selected for the study. As a screening, MICs of the honeys against 20 P. gingivalis strains were determined. Contents of methylglyoxal and hydrogen peroxide as the potential antimicrobial compounds were determined. These components (up to 100 mg/l), propolis (up to 200 mg/l) as well as the two honeys (up to 10% w/v) were tested against four P. gingivalis strains in planktonic growth and in a single-species biofilm. RESULTS 2% of Manuka honey inhibited the growth of 50% of the planktonic P. gingivalis, the respective MIC50 of the German beekeeper honey was 5%. Manuka honey contained 1.87 mg/kg hydrogen peroxide and the domestic honey 3.74 mg/kg. The amount of methylglyoxal was found to be 2 mg/kg in the domestic honey and 982 mg/kg in the Manuka honey. MICs for hydrogen peroxide were 10 mg/l - 100 mg/l, for methylglyoxal 5 - 20 mg/l, and for propolis 20 mg/l - 200 mg/l. 10% of both types of honey inhibited the formation of P. gingivalis biofilms and reduced the numbers of viable bacteria within 42 h-old biofilms. Neither a total prevention of biofilm formation nor a complete eradication of a 42 h-old biofilm by any of the tested compounds and the honeys were found. CONCLUSIONS Honey acts antibacterial against P. gingivalis. The observed pronounced effects of Manuka honey against planktonic bacteria but not within biofilm can be attributed to methylglyoxal as the characteristic antimicrobial component.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sex-related differences in susceptibility to pathogens are a common phenomenon in animals. In the eusocial Hymenoptera the two female castes, workers and queens, are diploid and males are haploid. The haploid susceptibility hypothesis predicts that haploid males are more susceptible to pathogen infections compared to females. Here we test this hypothesis using adult male (drone) and female (worker) honey bees (Apis mellifera), inoculated with the gut endoparasite Nosema ceranae and/or black queen cell virus (BQCV). These pathogens were chosen due to previously reported synergistic interactions between Nosema apis and BQCV. Our data do not support synergistic interactions between N. ceranae and BQCV and also suggest that BQCV has limited effect on both drone and worker health, regardless of the infection level. However, the data clearly show that, despite lower levels of N. ceranae spores in drones than in workers, Nosema-infected drones had both a higher mortality and a lower body mass than non-infected drones, across all treatment groups, while the mortality and body mass of worker bees were largely unaffected by N. ceranae infection, suggesting that drones are more susceptible to this pathogen than workers. In conclusion, the data reveal considerable sex-specific differences in pathogen susceptibility in honey bees and highlight the importance of ultimate measures for determining susceptibility, such as mortality and body quality, rather than mere infection levels

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interactions between stressors contribute to the recently reported increase in losses of honey bee colonies. Here we demonstrated that a synergistic effect on mortality by the low toxic, commonly used neonicotinoid thiacloprid and the nearly ubiquitous gut parasite Nosemaceranae is dependent on the pesticide dose. Furthermore, thiacloprid had a negative influence on N.ceranae reproduction. Our results highlight that interactions among honey bee health stressors can be dynamic and should be studied across a broader range of combinations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to improve cage systems for maintaining adult honey bee (Apis mellifera L.) workers under in vitro laboratory conditions. To achieve this goal, we experimentally evaluated the impact of different cages, developed by scientists of the international research network COLOSS (Prevention of honey bee COlony LOSSes), on the physiology and survival of honey bees. We identified three cages that promoted good survival of honey bees. The bees from cages that exhibited greater survival had relatively lower titers of deformed wing virus, suggesting that deformed wing virus is a significant marker reflecting stress level and health status of the host. We also determined that a leak- and drip-proof feeder was an integral part of a cage system and a feeder modified from a 20-ml plastic syringe displayed the best result in providing steady food supply to bees. Finally, we also demonstrated that the addition of protein to the bees' diet could significantly increase the level ofvitellogenin gene expression and improve bees' survival. This international collaborative study represents a critical step toward improvement of cage designs and feeding regimes for honey bee laboratory experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Few areas of the world have western honey bee (Apis mellifera) colonies that are free of invasive parasites Nosema ceranae (fungi) and Varroa destructor (mites). Particularly detrimental is V. destructor; in addition to feeding on host haemolymph, these mites are important vectors of several viruses that are further implicated as contributors to honey bee mortality around the world. Thus, the biogeography and attendant consequences of viral communities in the absence of V. destructor are of significant interest. The island of Newfoundland, Province of Newfoundland and Labrador, Canada, is free of V. destructor; the absence of N. ceranae has not been confirmed. Of 55 Newfoundland colonies inspected visually for their strength and six signs of disease, only K-wing had prevalence above 5% (40/55 colonies = 72.7%). Similar to an earlier study, screenings again confirmed the absence of V. destructor, small hive beetles Aethina tumida (Murray), tracheal mites Acarapis woodi (Rennie), and Tropilaelaps spp. ectoparasitic mites. Of a subset of 23 colonies screened molecularly for viruses, none had Israeli acute paralysis virus, Kashmir bee virus, or sacbrood virus. Sixteen of 23 colonies (70.0%) were positive for black queen cell virus, and 21 (91.3%) had some evidence for deformed wing virus. No N. ceranae was detected in molecular screens of 55 colonies, although it is possible extremely low intensity infections exist; the more familiar N. apis was found in 53 colonies (96.4%). Under these conditions, K-wing was associated (positively) with colony strength; however, viruses and N. apis were not. Furthermore, black queen cell virus was positively and negatively associated with K-wing and deformed wing virus, respectively. Newfoundland honey bee colonies are thus free of several invasive parasites that plague operations in other parts of the world, and they provide a unique research arena to study independent pathology of the parasites that are present.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nosema spp. fungal gut parasites are among myriad possible explanations for contemporary increased mortality of western honey bees (Apis mellifera, hereafter honey bee) in many regions of the world. Invasive Nosema ceranae is particularly worrisome because some evidence suggests it has greater virulence than its congener N. apis. N. ceranae appears to have recently switched hosts from Asian honey bees (Apis cerana) and now has a nearly global distribution in honey bees, apparently displacing N. apis. We examined parasite reproduction and effects of N. apis, N. ceranae, and mixed Nosema infections on honey bee hosts in laboratory experiments. Both infection intensity and honey bee mortality were significantly greater for N. ceranae than for N. apis or mixed infections; mixed infection resulted in mortality similar to N. apis parasitism and reduced spore intensity, possibly due to inter-specific competition. This is the first long-term laboratory study to demonstrate lethal consequences of N. apis and N. ceranae and mixed Nosema parasitism in honey bees, and suggests that differences in reproduction and intra-host competition may explain apparent heterogeneous exclusion of the historic parasite by the invasive species

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Parasites and pathogens are apparent key factors for the detrimental health of managed European honey bee subspecies, Apis mellifera. Apicultural trade is arguably the main factor for the almost global distribution of most honey bee diseases, thereby increasing chances for multiple infestations/infections of regions, apiaries, colonies and even individual bees. This imposes difficulties to evaluate the effects of pathogens in isolation, thereby creating demand to survey remote areas. Here, we conducted the first comprehensive survey for 14 honey bee pathogens in Mongolia (N = 3 regions, N = 9 locations, N = 151 colonies), where honey bee colonies depend on humans to overwinter. In Mongolia, honey bees, Apis spp., are not native and colonies of European A. mellifera subspecies have been introduced ~60 years ago. Despite the high detection power and large sample size across Mongolian regions with beekeeping, the mite Acarapis woodi, the bacteria Melissococcus plutonius and Paenibacillus larvae, the microsporidian Nosema apis, Acute bee paralysis virus, Kashmir bee virus, Israeli acute paralysis virus and Lake Sinai virus strain 2 were not detected, suggesting that they are either very rare or absent. The mite Varroa destructor, Nosema ceranae and four viruses (Sacbrood virus, Black queen cell virus, Deformed wing virus (DWV) and Chronic bee paralysis virus) were found with different prevalence. Despite the positive correlation between the prevalence of V. destructor mites and DWV, some areas had only mites, but not DWV, which is most likely due to the exceptional isolation of apiaries (up to 600 km). Phylogenetic analyses of the detected viruses reveal their clustering and European origin, thereby supporting the role of trade for pathogen spread and the isolation of Mongolia from South-Asian countries. In conclusion, this survey reveals the distinctive honey bee pathosphere of Mongolia, which offers opportunities for exciting future research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Queen health is crucial to colony survival of social bees. Recently, queen failure has been proposed to be a major driver of managed honey bee colony losses, yet few data exist concerning effects of environmental stressors on queens. Here we demonstrate for the first time that exposure to field realistic concentrations of neonicotinoid pesticides during development can severely affect queens of western honey bees (Apis mellifera). In pesticide-exposed queens, reproductive anatomy (ovaries) and physiology (spermathecal-stored sperm quality and quantity), rather than flight behaviour, were compromised and likely corresponded to reduced queen success (alive and producing worker offspring). This study highlights the detriments of neonicotinoids to queens of environmentally and economically important social bees, and further strengthens the need for stringent risk assessments to safeguard biodiversity and ecosystem services that are vulnerable to these substances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trypanosomatids infecting honey bees have been poorly studied with molecular methods until recently. After the description of Crithidia mellificae (Langridge and McGhee, 1967) it took about forty years until molecular data for honey bee trypanosomatids became available and were used to identify and describe a new trypanosomatid species from honey bees, Lotmaria passim (Evans and Schwarz, 2014). However, an easy method to distinguish them without sequencing is not yet available. Research on the related bumble bee parasites Crithidia bombi and Crithidia expoeki revealed a fragment length polymorphism in the internal transcribed spacer 1 (ITS1), which enabled species discrimination. In search of fragment length polymorphisms for differential diagnostics in honey bee trypanosomatids, we studied honey bee trypanosomatid cell cultures of C. mellificae and L. passim. This research resulted in the identification of fragment length polymorphisms in ITS1 and ITS1-2 markers, which enabled us to develop a diagnostic method to differentiate both honey bee trypanosomatid species without the need for sequencing. However, the amplification success of the ITS1 marker depends probably on the trypanosomatid infection level. Further investigation confirmed that L. passim is the dominant species in Belgium, Japan and Switzerland. We found C. mellificae only rarely in Belgian honey bee samples, but not in honey bee samples from other countries. C. mellificae was also detected in mason bees (Osmia bicornis and Osmia cornuta) besides in honey bees. Further, the characterization and comparison of additional markers from L. passim strain SF (published as C. mellificae strain SF) and a Belgian honey bee sample revealed very low divergence in the 18S rRNA, ITS1-2, 28S rRNA and cytochrome b sequences. Nevertheless, a variable stretch was observed in the gp63 virulence factor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Viruses seem to play a key role in European honey bee, Apis mellifera health, and have a much broader host spectrum than previously thought. Few studies have investigated interspecific virus transfer within the genus Apis. The introduction of A. mellifera into Asia exposed endemic Apis species to the risk of obtaining new viruses or viral strains and vice versa. To investigate the potential for host shifts, virus prevalence and sequences were monitored over three years in single and mixed-species apiaries hosting introduced A. mellifera and endemic Apis cerana. Deformed wing virus (DWV), Israeli acute paralysis virus (IAPV), black queen cell virus (BQCV), and sacbrood virus (SBV) were found, but not KBV, VDV-1, ABPV, or CBPV. Virus infections and prevalence were generally lower in A. cerana compared to A. mellifera, and varied over the years. The sequence data provided evidence for interspecific transfer of IAPV, BQCV, and DWV, but SBV strains seem to be species specific. Prevalence and sequence results taken together indicate that interspecific transfers of viruses are rare, even if honey bees are kept in close proximity. We discuss the pattern observed in the context host specificity and resistance. Our understanding of the extent of these exchanges is limited by a lack of knowledge on the mechanisms of adaptation of viruses to different hosts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Western honey bees (Apis mellifera) face an increasing number of challenges that in recent years have led to significant economic effects on apiculture, with attendant consequences for agriculture. Nosemosis is a fungal infection of honey bees caused by either Nosema apis or N. ceranae. The putative greater virulence of N. ceranae has spurred interest in understanding how it differs from N. apis. Little is known of effects of N. apis or N. ceranae on honey bee learning and memory. Following a Pavlovian model that relies on the proboscis extension reflex, we compared acquisition learning and long-term memory recall of uninfected (control) honey bees versus those inoculated with N. apis, N. ceranae, or both. We also tested whether spore intensity was associated with variation in learning and memory. Neither learning nor memory differed among treatments. There was no evidence of a relationship between spore intensity and learning, and only limited evidence of a negative effect on memory; this occurred only in the co-inoculation treatment. Our results suggest that if Nosema spp. are contributing to unusually high colony losses in recent years, the mechanism by which they may affect honey bees is probably not related to effects on learning or memory, at least as assessed by the proboscis extension reflex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Apis mellifera filamentous virus (AmFV) is a large double stranded DNA virus of honey bees, but its relationship with other parasites and prevalence are poorly known. We analyzed individual honey bees from three colonies at different times post emergence in order to monitor the dynamics of the AmFV gut colonization under natural conditions. Prevalence and loads of microsporidia and trypanosomes were also recorded, as well as five common honey bee RNA viruses. The results show that a high proportion of bees get infected with AmFV during the first week post-emergence (75%) and that AmFV DNA levels remained constant. A similar pattern was observed for microsporidia while trypanosomes seem to require more time to colonize the gut. No significant associations between these three infections were found, but significant positive correlations were observed between AmFV and RNA viruses. In parallel, the prevalence of AmFV in France and Sweden was assessed from pooled honey bee workers. The data indicate that AmFV is almost ubiquitous, and does not seem to follow seasonal patterns, although higher viral loads were significantly detected in spring. A high prevalence of AmFV was also found in winter bees, without obvious impact on overwintering of the colonies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interactions between pesticides and parasites are believed to be responsible for increased mortality of honey bee (Apis mellifera) colonies in the northern hemisphere. Previous efforts have employed experimental approaches using small groups under laboratory conditions to investigate influence of these stressors on honey bee physiology and behaviour, although both the colony level and field conditions play a key role for eusocial honey bees. Here, we challenged honey bee workers under in vivo colony conditions with sublethal doses of the neonicotinoid thiacloprid, the miticide tau-fluvalinate and the endoparasite Nosema ceranae, to investigate potential effects on longevity and behaviour using observation hives. In contrast to previous laboratory studies, our results do not suggest interactions among stressors, but rather lone effects of pesticides and the parasite on mortality and behaviour, respectively. These effects appear to be weak due to different outcomes at the two study sites, thereby suggesting that the role of thiacloprid, tau-fluvalinate and N. ceranae and interactions among them may have been overemphasized. In the future, investigations into the effects of honey bee stressors should prioritize the use of colonies maintained under a variety of environmental conditions in order to obtain more biologically relevant data.