72 resultados para High throughput


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Orphan- or understudied-crops are mostly staple food crops in developing world. They are broadly classified under cereals, legumes, root crops, fruits and vegetables. These under-researched crops contribute to the diet of a large portion of resource-poor consumers and at the same time generate income for small-holder farmers in developing countries, particularly in Africa. In addition, they perform better than major crops of the world under extreme soil and climatic conditions. However, orphan crops are not without problems. Due to lack of scientific investigation, most of them produce low yields while others have a variety of toxins that affect the health of consumers. Here, we present some highlights on the status and future perspectives of the Tef Biotechnology Project that employs modern improvement technique in order to genetically improve tef (Eragrostis tef), one of the most important orphan crop in Africa. A reverse genetics approach known as TILLING (Targeting Induced Local Lesions IN Genome) is implemented in order to tackle lodging, the major yield limiting factor in tef.Key words: Orphan crops, underresearched crops, Eragrostis tef, TILLING, semi-dwarf.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES: In order to create a suitable model for high-throughput drug screening, a Giardia lamblia WB C6 strain expressing Escherichia coli glucuronidase A (GusA) was created and tested with respect to susceptibility to the anti-giardial drugs nitazoxanide and metronidazole. METHODS: GusA, a well-established reporter gene in other systems, was cloned into the vector pPacVInteg allowing stable expression in G. lamblia under control of the promoter from the glutamate dehydrogenase (gdh) gene. The resulting transgenic strain was compared with the wild-type strain in a vitality assay, characterized with respect to susceptibility to nitazoxanide, metronidazole and -- as assessed in a 96-well plate format -- to a panel of 15 other compounds to be tested for anti-giardial activity. RESULTS: GusA was stably expressed in G. lamblia. Using a simple glucuronidase assay protocol, drug efficacy tests yielded results similar to those from cell counting. CONCLUSIONS: G. lamblia WB C6 GusA is a suitable tool for high-throughput anti-giardial drug screening.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The RNome of a cell is highly diverse and consists besides messenger RNAs (mRNAs), transfer RNAs (tRNAs), and ribosomal RNAs (rRNAs) also of other small and long transcript entities without apparent coding potential. This class of molecules, commonly referred to as non-protein-coding RNAs (ncRNAs), is involved in regulating numerous biological processes and thought to contribute to cellular complexity. Therefore, much effort is put into their identification and further functional characterization. Here we provide a cost-effective and reliable method for cDNA library construction of small RNAs in the size range of 20-500 residues. The effectiveness of the described method is demonstrated by the analysis of ribosome-associated small RNAs in the eukaryotic model organism Trypanosoma brucei.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Androgens are precursors for sex steroids and are predominantly produced in the human gonads and the adrenal cortex. They are important for intrauterine and postnatal sexual development and human reproduction. Although human androgen biosynthesis has been extensively studied in the past, exact mechanisms underlying the regulation of androgen production in health and disease remain vague. Here, the knowledge on human androgen biosynthesis and regulation is reviewed with a special focus on human adrenal androgen production and the hyperandrogenic disorder of polycystic ovary syndrome (PCOS). Since human androgen regulation is highly specific without a good animal model, most studies are performed on patients harboring inborn errors of androgen biosynthesis, on human biomaterials and human (tumor) cell models. In the past, most studies used a candidate gene approach while newer studies use high throughput technologies to identify novel regulators of androgen biosynthesis. Using genome wide association studies on cohorts of patients, novel PCOS candidate genes have been recently described. Variant 2 of the DENND1A gene was found overexpressed in PCOS theca cells and confirmed to enhance androgen production. Transcriptome profiling of dissected adrenal zones established a role for BMP4 in androgen synthesis. Similarly, transcriptome analysis of human adrenal NCI-H295 cells identified novel regulators of androgen production. Kinase p38α (MAPK14) was found to phosphorylate CYP17 for enhanced 17,20 lyase activity and RARB and ANGPTL1 were detected in novel networks regulating androgens. The discovery of novel players for androgen biosynthesis is of clinical significance as it provides targets for diagnostic and therapeutic use.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Radiation metabolomics can be defined as the global profiling of biological fluids to uncover latent, endogenous small molecules whose concentrations change in a dose-response manner following exposure to ionizing radiation. In response to the potential threat of nuclear or radiological terrorism, the Center for High-Throughput Minimally Invasive Radiation Biodosimetry was established to develop field-deployable biodosimeters based, in part, on rapid analysis by mass spectrometry of readily and easily obtainable biofluids. In this review, we briefly summarize radiation biology and key events related to actual and potential nuclear disasters, discuss the important contributions the field of mass spectrometry has made to the field of radiation metabolomics, and summarize current discovery efforts to use mass spectrometry-based metabolomics to identify dose-responsive urinary constituents, and ultimately to build and deploy a noninvasive high-throughput biodosimeter.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Despite the many proposed advantages related to nanotechnology, there are increasing concerns as to the potential adverse human health and environmental effects that the production of, and subsequent exposure to nanoparticles (NPs) might pose. In regard to human health, these concerns are founded upon the plethora of knowledge gained from research relating to the effects observed following exposure to environmental air pollution. It is known that increased exposure to environmental air pollution can cause reduced respiratory health, as well as exacerbate pre-existing conditions such as cardiovascular disease and chronic obstructive pulmonary disease. Such disease states have also been associated with exposure to the NP component contained within environmental air pollution, raising concerns as to the effects of NP exposure. It is not only exposure to accidentally produced NPs however, which should be approached with caution. Over the past decades, NPs have been specifically engineered for a wide range of consumer, industrial and technological applications. Due to the inevitable exposure of NPs to humans, owing to their use in such applications, it is therefore imperative that an understanding of how NPs interact with the human body is gained. In vivo research poses a beneficial model for gaining immediate and direct knowledge of human exposure to such xenobiotics. This research outlook however, has numerous limitations. Increased research using in vitro models has therefore been performed, as these models provide an inexpensive and high-throughput alternative to in vivo research strategies. Despite such advantages, there are also various restrictions in regard to in vitro research. Therefore, the aim of this review, in addition to providing a short perspective upon the field of nanotoxicology, is to discuss (1) the advantages and disadvantages of in vitro research and (2) how in vitro research may provide essential information pertaining to the human health risks posed by NP exposure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The intestinal ecosystem is formed by a complex, yet highly characteristic microbial community. The parameters defining whether this community permits invasion of a new bacterial species are unclear. In particular, inhibition of enteropathogen infection by the gut microbiota ( = colonization resistance) is poorly understood. To analyze the mechanisms of microbiota-mediated protection from Salmonella enterica induced enterocolitis, we used a mouse infection model and large scale high-throughput pyrosequencing. In contrast to conventional mice (CON), mice with a gut microbiota of low complexity (LCM) were highly susceptible to S. enterica induced colonization and enterocolitis. Colonization resistance was partially restored in LCM-animals by co-housing with conventional mice for 21 days (LCM(con21)). 16S rRNA sequence analysis comparing LCM, LCM(con21) and CON gut microbiota revealed that gut microbiota complexity increased upon conventionalization and correlated with increased resistance to S. enterica infection. Comparative microbiota analysis of mice with varying degrees of colonization resistance allowed us to identify intestinal ecosystem characteristics associated with susceptibility to S. enterica infection. Moreover, this system enabled us to gain further insights into the general principles of gut ecosystem invasion by non-pathogenic, commensal bacteria. Mice harboring high commensal E. coli densities were more susceptible to S. enterica induced gut inflammation. Similarly, mice with high titers of Lactobacilli were more efficiently colonized by a commensal Lactobacillus reuteri(RR) strain after oral inoculation. Upon examination of 16S rRNA sequence data from 9 CON mice we found that closely related phylotypes generally display significantly correlated abundances (co-occurrence), more so than distantly related phylotypes. Thus, in essence, the presence of closely related species can increase the chance of invasion of newly incoming species into the gut ecosystem. We provide evidence that this principle might be of general validity for invasion of bacteria in preformed gut ecosystems. This might be of relevance for human enteropathogen infections as well as therapeutic use of probiotic commensal bacteria.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A variety of conformationally constrained aspartate and glutamate analogues inhibit the glutamate transporter 1 (GLT-1, also known as EAAT2). To expand the search for such analogues, a virtual library of aliphatic aspartate and glutamate analogues was generated starting from the chemical universe database GDB-11, which contains 26.4 million possible molecules up to 11 atoms of C, N, O, F, resulting in 101026 aspartate analogues and 151285 glutamate analogues. Virtual screening was realized by high-throughput docking to the glutamate binding site of the glutamate transporter homologue from Pyrococcus horikoshii (PDB code: 1XFH ) using Autodock. Norbornane-type aspartate analogues were selected from the top-scoring virtual hits and synthesized. Testing and optimization led to the identification of (1R*,2R*,3S*,4R*,6R*)-2-amino-6-phenethyl-bicyclo[2.2.1]heptane-2,3-dicarboxylic acid as a new inhibitor of GLT-1 with IC(50) = 1.4 ?M against GLT-1 and no inhibition of the related transporter EAAC1. The systematic diversification of known ligands by enumeration with help of GDB followed by virtual screening, synthesis, and testing as exemplified here provides a general strategy for drug discovery.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A growing world population, changing climate and limiting fossil fuels will provide new pressures on human production of food, medicine, fuels and feed stock in the twenty-first century. Enhanced crop production promises to ameliorate these pressures. Crops can be bred for increased yields of calories, starch, nutrients, natural medicinal compounds, and other important products. Enhanced resistance to biotic and abiotic stresses can be introduced, toxins removed, and industrial qualities such as fibre strength and biofuel per mass can be increased. Induced and natural mutations provide a powerful method for the generation of heritable enhanced traits. While mainly exploited in forward, phenotype driven, approaches, the rapid accumulation of plant genomic sequence information and hypotheses regarding gene function allows the use of mutations in reverse genetic approaches to identify lesions in specific target genes. Such gene-driven approaches promise to speed up the process of creating novel phenotypes, and can enable the generation of phenotypes unobtainable by traditional forward methods. TILLING (Targeting Induced Local Lesions IN Genome) is a high-throughput and low cost reverse genetic method for the discovery of induced mutations. The method has been modified for the identification of natural nucleotide polymorphisms, a process called Ecotilling. The methods are general and have been applied to many species, including a variety of different crops. In this chapter the current status of the TILLING and Ecotilling methods and provide an overview of progress in applying these methods to different plant species, with a focus on work related to food production for developing nations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The prognostic outcome for hepatocellular carcinoma (HCC) remains poor. Disease progression is accompanied by dedifferentiation of the carcinoma, a process that is not well understood. The aim of this study was to get more insight into the molecular characteristics of dedifferentiated carcinomas using high throughput techniques. Microarray-based global gene expression analysis was performed on five poorly differentiated HCC cell lines compared with non-neoplastic hepatic controls and a set of three cholangiolar carcinoma (CC) cell lines. The gene with the highest upregulation was HLXB9. HLXB9 is a gene of the homeobox genfamily important for the development of the pancreas. RT-PCR confirmed the upregulation of HLXB9 in surgical specimens of carcinoma tissue, suggesting its biological significance. Interestingly, HLXB9 upregulation was primary observed in poorly differentiated HCC with a pseudoglandular pattern compared with a solid pattern HCC or in moderate or well-differentiated HCC. Additional the expression of translated HLXB9, the protein HB9 (NCBI: NP_001158727), was analyzed by western blotting. Expression of HB9 was only detected in the cytoplasm but not in the nuclei of the HCC cells. For validation CC were also investigated. Again, we found an upregulation of HLXB9 in CC cells accompanied by an expression of HB9 in the cytoplasms of these tumor cells, respectively. In conclusion, homeobox HLXB9 is upregulated in poorly differentiated HCC with a pseudoglandular pattern. The translated HB9 protein is found in the cytoplasm of these HCC and CC. We therefore assume HLXB9 as a possible link in the understanding of the development of HCC and CC, respectively.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Since the development and prognosis of alcohol-induced liver disease (ALD) vary significantly with genetic background, identification of a genetic background-independent noninvasive ALD biomarker would significantly improve screening and diagnosis. This study explored the effect of genetic background on the ALD-associated urinary metabolome using the Ppara-null mouse model on two different backgrounds, C57BL/6 (B6) and 129/SvJ (129S), along with their wild-type counterparts. Reversed-phase gradient UPLC-ESI-QTOF-MS analysis revealed that urinary excretion of a number of metabolites, such as ethylsulfate, 4-hydroxyphenylacetic acid, 4-hydroxyphenylacetic acid sulfate, adipic acid, pimelic acid, xanthurenic acid, and taurine, were background-dependent. Elevation of ethyl-β-d-glucuronide and N-acetylglycine was found to be a common signature of the metabolomic response to alcohol exposure in wild-type as well as in Ppara-null mice of both strains. However, increased excretion of indole-3-lactic acid and phenyllactic acid was found to be a conserved feature exclusively associated with the alcohol-treated Ppara-null mouse on both backgrounds that develop liver pathologies similar to the early stages of human ALD. These markers reflected the biochemical events associated with early stages of ALD pathogenesis. The results suggest that indole-3-lactic acid and phenyllactic acid are potential candidates for conserved and pathology-specific high-throughput noninvasive biomarkers for early stages of ALD.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Biological diversity and its constituent chemical diversity have served as one of the richest sources of bioprospecting leading to the discovery of some of the most important bioactive molecules for mankind. Despite this excellent record, in the recent past, however, bioprospecting of biological resources has met with little success; there has been a perceptible decline in the discovery of novel bioactive compounds. Several arguments have been proposed to explain the current poor success in bioprospecting. Among them, it has been argued that to bioprospect more biodiversity may not necessarily be productive, considering that chemical and functional diversity might not scale with biological diversity. In this paper, we offer a critique on the current perception of biodiversity and chemodiversity and ask to what extent it is relevant in the context of bioprospecting. First, using simple models, we analyze the relation among biodiversity, chemodiversity and functional redundancies in chemical plans of plants and argue that the biological space for exploration might still be wide open. Second, in the context of future bioprospecting, we argue that brute-force high throughput screening approaches alone are insufficient and cost ineffective in realizing bioprospecting success. Therefore, intelligent or non-random approaches to bioprospecting need to be adopted. We review here few examples of such approaches and show how these could be further developed and used in the future to accelerate the pace of discovery.