21 resultados para High Temperature Superconductors


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this short review, we provide some new insights into the material synthesis and characterization of modern multi-component superconducting oxides. Two different approaches such as the high-pressure, high-temperature method and ceramic combinatorial chemistry will be reported with application to several typical examples. First, we highlight the key role of the extreme conditions in the growth of Fe-based superconductors, where a careful control of the composition-structure relation is vital for understanding the microscopic physics. The availability of high-quality LnFeAsO (Ln = lanthanide) single crystals with substitution of O by F, Sm by Th, Fe by Co, and As by P allowed us to measure intrinsic and anisotropic superconducting properties such as Hc2, Jc. Furthermore, we demonstrate that combinatorial ceramic chemistry is an efficient way to search for new superconducting compounds. A single-sample synthesis concept based on multi-element ceramic mixtures can produce a variety of local products. Such a system needs local probe analyses and separation techniques to identify compounds of interest. We present the results obtained from random mixtures of Ca, Sr, Ba, La, Zr, Pb, Tl, Y, Bi, and Cu oxides reacted at different conditions. By adding Zr but removing Tl, Y, and Bi, the bulk state superconductivity got enhanced up to about 122 K.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The aim of this study was to evaluate the use of high resolution CT to radiologically define teeth filling material properties in terms of Hounsfield units after high temperature exposure.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The impact of heat stress on the functioning of the photosynthetic apparatus was examined in pea (Pisum sativum L.) plants grown at control (25 °C; 25 °C-plants) or moderately elevated temperature (35 °C; 35 °C-plants). In both types of plants net photosynthesis (Pn) decreased with increasing leaf temperature (LT) and was more than 80% reduced at 45 °C as compared to 25 °C. In the 25 °C-plants, LTs higher than 40 °C could result in a complete suppression of Pn. Short-term acclimation to heat stress did not alter the temperature response of Pn. Chlorophyll a fluorescence measurements revealed that photosynthetic electron transport (PET) started to decrease when LT increased above 35 °C and that growth at 35 °C improved the thermal stability of the thylakoid membranes. In the 25 °C-plants, but not in the 35 °C-plants, the maximum quantum yield of the photosystem II primary photochemistry, as judged by measuring the Fv/Fm ratio, decreased significantly at LTs higher than 38 °C. A post-illumination heat-induced reduction of the plastoquinone pool was observed in the 25 °C-plants, but not in the 35 °C-plants. Inhibition of Pn by heat stress correlated with a reduction of the activation state of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). Western-blot analysis of Rubisco activase showed that heat stress resulted in a redistribution of activase polypeptides from the soluble to the insoluble fraction of extracts. Heat-dependent inhibition of Pn and PET could be reduced by increasing the intercellular CO2 concentration, but much more effectively so in the 35 °C-plants than in the 25 °C-plants. The 35 °C-plants recovered more efficiently from heat-dependent inhibition of Pn than the 25 °C-plants. The results show that growth at moderately high temperature hardly diminished inhibition of Pn by heat stress that originated from a reversible heat-dependent reduction of the Rubisco activation state. However, by improving the thermal stability of the thylakoid membranes it allowed the photosynthetic apparatus to preserve its functional potential at high LTs, thus minimizing the after-effects of heat stress.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fluids are considered a fundamental agent for chemical exchanges between different rock types in the subduction system. Constraints on the sources and pathways of subduction fluids thus provide crucial information to reconstruct subduction processes. The Monviso ophiolitic sequence is composed of mafic, ultramafic and minor sediments that have been subducted to ~80 km depth. In this sequence, both localized fluid flow and channelized fluids along major shear zones have been documented. We investigate the timing and source of the fluids that affected the dominant mafic rocks using microscale U-Pb dating of zircon and oxygen isotope analysis of mineral zones (garnet, zircon and antigorite) in high pressure rocks with variable degree of metasomatic modification. In mafic eclogites, Jurassic zircon cores are the only mineralogical relicts of the protolith gabbros and retain δ18O values of 4.5–6 ‰, typical of mantle melts. Garnet and metamorphic zircon that grew during prograde to peak metamorphism display low δ18O values between 0.2 and 3.8 ‰, which are likely inherited from high-temperature alteration of the protolith on the sea floor. This is corroborated by δ18O values of 3.0 and 3.6 ‰ in antigorite from surrounding serpentinites. In metasomatised eclogites within the Lower Shear Zone, garnet rim formed at the metamorphic peak shows a shift to higher δ18O up to 6‰. The age of zircons in high-pressure veins and metasomatised eclogites constrains the timing of fluid flow at high pressure at around 45–46 Ma. Although the oxygen data do not contradict previous reports of interaction with serpentinite-derived fluids, the shift to isotopically heavier oxygen compositions requires contribution from sediment-derived fluids. The scarcity of metasediments in the Monviso sequence suggests that such fluids were concentrated and fluxed along the Lower Shear Zone in a sufficient amount to modify the oxygen composition of the eclogitic minerals.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Norcamphor (C7H10O) was subjected to plane strain simple shear in a see-through deformation rig at four different strain rate and temperature conditions. Two transient stages in the microfabric evolution to steady state are distinguished. The grain scale mechanisms associated with the microstructural and textural evolution vary with the applied temperature, strain rate and strain. In high-temperature-low-strain-rate experiments, computer integrated polarization microscopy reveals that the texture evolution is closely related to the crystallographic rotation paths and rotation rates of individual grains. High c-axis rotation rates at low to intermediate shear strains are related to the development of a symmetrical c-axis cross girdle by the end of the first transient stage (γ = 1.5 to 2). During the second transient stage (γ = 1.5 to 6), the cross girdle yields to an oblique c-axis single girdle as c-axis rotation rates decrease and the relative activity of grain boundary migration recrystallization increases. Steady state (γ > 8) is characterized by a stable end orientation of the sample texture and the cyclic growth, rotation and consumption of individual grains within the aggregate.