53 resultados para Hierarchical task analysis
Resumo:
OBJECTIVE: Meta-analysis of studies of the accuracy of diagnostic tests currently uses a variety of methods. Statistically rigorous hierarchical models require expertise and sophisticated software. We assessed whether any of the simpler methods can in practice give adequately accurate and reliable results. STUDY DESIGN AND SETTING: We reviewed six methods for meta-analysis of diagnostic accuracy: four simple commonly used methods (simple pooling, separate random-effects meta-analyses of sensitivity and specificity, separate meta-analyses of positive and negative likelihood ratios, and the Littenberg-Moses summary receiver operating characteristic [ROC] curve) and two more statistically rigorous approaches using hierarchical models (bivariate random-effects meta-analysis and hierarchical summary ROC curve analysis). We applied the methods to data from a sample of eight systematic reviews chosen to illustrate a variety of patterns of results. RESULTS: In each meta-analysis, there was substantial heterogeneity between the results of different studies. Simple pooling of results gave misleading summary estimates of sensitivity and specificity in some meta-analyses, and the Littenberg-Moses method produced summary ROC curves that diverged from those produced by more rigorous methods in some situations. CONCLUSION: The closely related hierarchical summary ROC curve or bivariate models should be used as the standard method for meta-analysis of diagnostic accuracy.
Resumo:
Coordinated eye and head movements simultaneously occur to scan the visual world for relevant targets. However, measuring both eye and head movements in experiments allowing natural head movements may be challenging. This paper provides an approach to study eye-head coordination: First, we demonstra- te the capabilities and limits of the eye-head tracking system used, and compare it to other technologies. Second, a beha- vioral task is introduced to invoke eye-head coordination. Third, a method is introduced to reconstruct signal loss in video- based oculography caused by cornea reflection artifacts in order to extend the tracking range. Finally, parameters of eye- head coordination are identified using EHCA (eye-head co- ordination analyzer), a MATLAB software which was developed to analyze eye-head shifts. To demonstrate the capabilities of the approach, a study with 11 healthy subjects was performed to investigate motion behavior. The approach presented here is discussed as an instrument to explore eye-head coordination, which may lead to further insights into attentional and motor symptoms of certain neurological or psychiatric diseases, e.g., schizophrenia.
Resumo:
We tested the assumption that persistent performance in an exhausting indoor cycling task would depend on momentarily available self-control strength (N = 20 active participants). In a within-subjects design (two points of measurement, exactly seven days apart), participants’ self-control strength was experimentally manipulated (depletion: yes vs. no; order counterbalanced) via the Stroop test before the participants performed a cycling task. In line with our hypothesis, hierarchical linear modelling (HLM) revealed that participants consistently performed worse over a period of 18 minutes when they were ego depleted. In addition, HLM analysis revealed that depleted participants invested less effort in the cycling task, as indicated by their lower heart rate. This effect escalated over time, as indicated by a time × condition interaction. These results indicate that self-control strength is necessary to obtain an optimal level of performance in endurance tasks requiring high levels of persistence. Practical implications are discussed.
Resumo:
Medical-forensic examination of sexual assault victims and alleged offenders is a common task of many forensic institutes. In the current study, the results from samples taken at the Institute of Legal Medicine, Hanover Medical School, during a period from 2005 to 2007 were retrospectively evaluated. In total, 292 victims (283 females and nine males) and 88 suspects were examined. At the time of the assault, 41.8% of the victims and 43.2% of the alleged perpetrators were under the influence of alcohol. Injuries were found in 84.9% of the victims and 39.8% of the suspects. Thirty victims (10.3%) reported having been choked or strangled. Cytology was performed in 218 victims. In 81 cases (38.0%), sperm could be detected in vaginal swabs up to 3 days post-assault. In seven (18.9%) out of 37 anal samples, evidence of sperm could be found 24 h post-assault. None of 22 oral samples was positive for sperm. Out of 301 sexual assault cases, 171 could be proved by means of medical-forensic examination. In summary, our evaluation shows that an early medical-forensic examination of both victim and suspect can secure numerous medical findings. Furthermore, persons intoxicated by alcohol, handicapped persons and persons with psychiatric disorders are more vulnerable to become a sexual assault victim.
Core networks for visual-concrete and abstract thought content: a brain electric microstate analysis
Resumo:
Commonality of activation of spontaneously forming and stimulus-induced mental representations is an often made but rarely tested assumption in neuroscience. In a conjunction analysis of two earlier studies, brain electric activity during visual-concrete and abstract thoughts was studied. The conditions were: in study 1, spontaneous stimulus-independent thinking (post-hoc, visual imagery or abstract thought were identified); in study 2, reading of single nouns ranking high or low on a visual imagery scale. In both studies, subjects' tasks were similar: when prompted, they had to recall the last thought (study 1) or the last word (study 2). In both studies, subjects had no instruction to classify or to visually imagine their thoughts, and accordingly were not aware of the studies' aim. Brain electric data were analyzed into functional topographic brain images (using LORETA) of the last microstate before the prompt (study 1) and of the word-type discriminating event-related microstate after word onset (study 2). Conjunction analysis across the two studies yielded commonality of activation of core networks for abstract thought content in left anterior superior regions, and for visual-concrete thought content in right temporal-posterior inferior regions. The results suggest that two different core networks are automatedly activated when abstract or visual-concrete information, respectively, enters working memory, without a subject task or instruction about the two classes of information, and regardless of internal or external origin, and of input modality. These core machineries of working memory thus are invariant to source or modality of input when treating the two types of information.
Resumo:
Cognitive functioning is based on binding processes, by which different features and elements of neurocognition are integrated and coordinated. Binding is an essential ingredient of, for instance, Gestalt perception. We have implemented a paradigm of causality perception based on the work of Albert Michotte, in which 2 identical discs move from opposite sides of a monitor, steadily toward, and then past one another. Their coincidence generates an ambiguous percept of either "streaming" or "bouncing," which the subjects (34 schizophrenia spectrum patients and 34 controls with mean age 27.9 y) were instructed to report. The latter perception is a marker of the binding processes underlying perceived causality (type I binding). In addition to this visual task, acoustic stimuli were presented at different times during the task (150 ms before and after visual coincidence), which can modulate perceived causality. This modulation by intersensory and temporally delayed stimuli is viewed as a different type of binding (type II). We show here, using a mixed-effects hierarchical analysis, that type II binding distinguishes schizophrenia spectrum patients from healthy controls, whereas type I binding does not. Type I binding may even be excessive in some patients, especially those with positive symptoms; Type II binding, however, was generally attenuated in patients. The present findings point to ways in which the disconnection (or Gestalt) hypothesis of schizophrenia can be refined, suggesting more specific markers of neurocognitive functioning and potential targets of treatment.
Resumo:
Prediction of clinical outcome in cancer is usually achieved by histopathological evaluation of tissue samples obtained during surgical resection of the primary tumor. Traditional tumor staging (AJCC/UICC-TNM classification) summarizes data on tumor burden (T), presence of cancer cells in draining and regional lymph nodes (N) and evidence for metastases (M). However, it is now recognized that clinical outcome can significantly vary among patients within the same stage. The current classification provides limited prognostic information, and does not predict response to therapy. Recent literature has alluded to the importance of the host immune system in controlling tumor progression. Thus, evidence supports the notion to include immunological biomarkers, implemented as a tool for the prediction of prognosis and response to therapy. Accumulating data, collected from large cohorts of human cancers, has demonstrated the impact of immune-classification, which has a prognostic value that may add to the significance of the AJCC/UICC TNM-classification. It is therefore imperative to begin to incorporate the 'Immunoscore' into traditional classification, thus providing an essential prognostic and potentially predictive tool. Introduction of this parameter as a biomarker to classify cancers, as part of routine diagnostic and prognostic assessment of tumors, will facilitate clinical decision-making including rational stratification of patient treatment. Equally, the inherent complexity of quantitative immunohistochemistry, in conjunction with protocol variation across laboratories, analysis of different immune cell types, inconsistent region selection criteria, and variable ways to quantify immune infiltration, all underline the urgent requirement to reach assay harmonization. In an effort to promote the Immunoscore in routine clinical settings, an international task force was initiated. This review represents a follow-up of the announcement of this initiative, and of the J Transl Med. editorial from January 2012. Immunophenotyping of tumors may provide crucial novel prognostic information. The results of this international validation may result in the implementation of the Immunoscore as a new component for the classification of cancer, designated TNM-I (TNM-Immune).
Resumo:
For smart applications, nodes in wireless multimedia sensor networks (MWSNs) have to take decisions based on sensed scalar physical measurements. A routing protocol must provide the multimedia delivery with quality level support and be energy-efficient for large-scale networks. With this goal in mind, this paper proposes a smart Multi-hop hierarchical routing protocol for Efficient VIdeo communication (MEVI). MEVI combines an opportunistic scheme to create clusters, a cross-layer solution to select routes based on network conditions, and a smart solution to trigger multimedia transmission according to sensed data. Simulations were conducted to show the benefits of MEVI compared with the well-known Low-Energy Adaptive Clustering Hierarchy (LEACH) protocol. This paper includes an analysis of the signaling overhead, energy-efficiency, and video quality.
Resumo:
Searching for the neural correlates of visuospatial processing using functional magnetic resonance imaging (fMRI) is usually done in an event-related framework of cognitive subtraction, applying a paradigm comprising visuospatial cognitive components and a corresponding control task. Besides methodological caveats of the cognitive subtraction approach, the standard general linear model with fixed hemodynamic response predictors bears the risk of being underspecified. It does not take into account the variability of the blood oxygen level-dependent signal response due to variable task demand and performance on the level of each single trial. This underspecification may result in reduced sensitivity regarding the identification of task-related brain regions. In a rapid event-related fMRI study, we used an extended general linear model including single-trial reaction-time-dependent hemodynamic response predictors for the analysis of an angle discrimination task. In addition to the already known regions in superior and inferior parietal lobule, mapping the reaction-time-dependent hemodynamic response predictor revealed a more specific network including task demand-dependent regions not being detectable using the cognitive subtraction method, such as bilateral caudate nucleus and insula, right inferior frontal gyrus and left precentral gyrus.
Resumo:
Behavioral studies suggest that women and men differ in the strategic elaboration of verbally encoded information especially in the absence of external task demand. However, measuring such covert processing requires other than behavioral data. The present study used event-related potentials to compare sexes in lower and higher order semantic processing during the passive reading of semantically related and unrelated word pairs. Women and men showed the same early context effect in the P1-N1 transition period. This finding indicates that the initial lexical-semantic access is similar in men and women. In contrast, sexes differed in higher order semantic processing. Women showed an earlier and longer lasting context effect in the N400 accompanied by larger signal strength in temporal networks similarly recruited by men and women. The results suggest that women spontaneously conduct a deeper semantic analysis. This leads to faster processing of related words in the active neural networks as reflected in a shorter stability of the N400 map in women. Taken together, the findings demonstrate that there is a selective sex difference in the controlled semantic analysis during passive word reading that is not reflected in different functional organization but in the depth of processing.
Resumo:
Spatial independent component analysis (sICA) of functional magnetic resonance imaging (fMRI) time series can generate meaningful activation maps and associated descriptive signals, which are useful to evaluate datasets of the entire brain or selected portions of it. Besides computational implications, variations in the input dataset combined with the multivariate nature of ICA may lead to different spatial or temporal readouts of brain activation phenomena. By reducing and increasing a volume of interest (VOI), we applied sICA to different datasets from real activation experiments with multislice acquisition and single or multiple sensory-motor task-induced blood oxygenation level-dependent (BOLD) signal sources with different spatial and temporal structure. Using receiver operating characteristics (ROC) methodology for accuracy evaluation and multiple regression analysis as benchmark, we compared sICA decompositions of reduced and increased VOI fMRI time-series containing auditory, motor and hemifield visual activation occurring separately or simultaneously in time. Both approaches yielded valid results; however, the results of the increased VOI approach were spatially more accurate compared to the results of the decreased VOI approach. This is consistent with the capability of sICA to take advantage of extended samples of statistical observations and suggests that sICA is more powerful with extended rather than reduced VOI datasets to delineate brain activity.
Resumo:
Studies of diagnostic accuracy require more sophisticated methods for their meta-analysis than studies of therapeutic interventions. A number of different, and apparently divergent, methods for meta-analysis of diagnostic studies have been proposed, including two alternative approaches that are statistically rigorous and allow for between-study variability: the hierarchical summary receiver operating characteristic (ROC) model (Rutter and Gatsonis, 2001) and bivariate random-effects meta-analysis (van Houwelingen and others, 1993), (van Houwelingen and others, 2002), (Reitsma and others, 2005). We show that these two models are very closely related, and define the circumstances in which they are identical. We discuss the different forms of summary model output suggested by the two approaches, including summary ROC curves, summary points, confidence regions, and prediction regions.
Resumo:
Alveolar echinococcosis (AE)--caused by the cestode Echinococcus multilocularis--is a severe zoonotic disease found in temperate and arctic regions of the northern hemisphere. Even though the transmission patterns observed in different geographical areas are heterogeneous, the nuclear and mitochondrial targets usually used for the genotyping of E. multilocularis have shown only a marked genetic homogeneity in this species. We used microsatellite sequences, because of their high typing resolution, to explore the genetic diversity of E. multilocularis. Four microsatellite targets (EmsJ, EmsK, and EmsB, which were designed in our laboratory, and NAK1, selected from the literature) were tested on a panel of 76 E. multilocularis samples (larval and adult stages) obtained from Alaska, Canada, Europe, and Asia. Genetic diversity for each target was assessed by size polymorphism analysis. With the EmsJ and EmsK targets, two alleles were found for each locus, yielding two and three genotypes, respectively, discriminating European isolates from the other groups. With NAK1, five alleles were found, yielding seven genotypes, including those specific to Tibetan and Alaskan isolates. The EmsB target, a tandem repeated multilocus microsatellite, found 17 alleles showing a complex pattern. Hierarchical clustering analyses were performed with the EmsB findings, and 29 genotypes were identified. Due to its higher genetic polymorphism, EmsB exhibited a higher discriminatory power than the other targets. The complex EmsB pattern was able to discriminate isolates on a regional and sectoral level, while avoiding overdistinction. EmsB will be used to assess the putative emergence of E. multilocularis in Europe.
Resumo:
Patients with diabetes mellitus (DM) often have alterations of the autonomic nervous system (ANS), even early in their disease course. Previous research has not evaluated whether these changes may have consequences on adaptation mechanisms in DM, e.g. to mental stress. We therefore evaluated whether patients with DM who already had early alterations of the ANS reacted with an abnormal regulatory pattern to mental stress. We used the spectral analysis technique, known to be valuable and reliable in the investigation of disturbances of the ANS. We investigated 34 patients with DM without clinical evidence of ANS dysfunction (e.g. orthostatic hypotension) and 44 normal control subjects (NC group). No patients on medication known to alter ANS responses were accepted. The investigation consisted of a resting state evaluation and a mental stress task (BonnDet). In basal values, only the 21 patients with type 2 DM were different in respect to body mass index and systolic blood pressure. In the study parameters we found significantly lower values in resting and mental stress spectral power of mid-frequency band (known to represent predominantly sympathetic influences) and of high-frequency and respiration bands (known to represent parasympathetic influences) in patients with DM (types 1 and 2) compared with NC group (5.3 +/- 1.2 ms2 vs. 6.1 +/- 1.3 ms2, and 5.5 +/- 1.6 ms2 vs. 6.2 +/- 1.5 ms2, and 4.6 +/- 1.7 ms2 vs. 6.2 +/- 1.5 ms2, for resting values respectively; 4.7 +/- 1.4 ms2 vs. 5.9 +/- 1.2 ms2, and 4.6 +/- 1.9 ms2 vs. 5.6 +/- 1.7 ms2, and 3.7 +/- 2.1 ms2 vs. 5.6 +/- 1.7 ms2, for stress values respectively; M/F ratio 6/26 vs. 30/14). These differences remained significant even when controlled for age, sex, and body weight. However, patients with DM type 2 (and significantly higher body weight) showed only significant values in mental stress modulus values. There were no specific group effects in the patients with DM in adaptation mechanisms to mental stress compared with the NC group. These findings demonstrate that power spectral examinations at rest are sufficiently reliable to diagnose early alterations in ANS in patients with DM. The spectral analysis technique is sensitive and reliable in investigation of ANS in patients with DM without clinically symptomatic autonomic dysfunction.