18 resultados para Helicity method, subtraction method, numerical methods, random polarizations
Resumo:
In attempts to elucidate the underlying mechanisms of spinal injuries and spinal deformities, several experimental and numerical studies have been conducted to understand the biomechanical behavior of the spine. However, numerical biomechanical studies suffer from uncertainties associated with hard- and soft-tissue anatomies. Currently, these parameters are identified manually on each mesh model prior to simulations. The determination of soft connective tissues on finite element meshes can be a tedious procedure, which limits the number of models used in the numerical studies to a few instances. In order to address these limitations, an image-based method for automatic morphing of soft connective tissues has been proposed. Results showed that the proposed method is capable to accurately determine the spatial locations of predetermined bony landmarks. The present method can be used to automatically generate patient-specific models, which may be helpful in designing studies involving a large number of instances and to understand the mechanical behavior of biomechanical structures across a given population.
Resumo:
INTRODUCTION The clinical tests currently used to assess spinal biomechanics preoperatively are unable to assess true mechanical spinal stiffness. They rely on spinal displacement without considering the force required to deform a patient's spine. We propose a preoperative method for noninvasively quantifying the three-dimensional patient-specific stiffness of the spines of adolescent idiopathic scoliosis patients. METHODS The technique combines a novel clinical test with numerical optimization of a finite element model of the patient's spine. RESULTS A pilot study conducted on five patients showed that the model was able to provide accurate 3D reconstruction of the spine's midline and predict the spine's stiffness for each patient in flexion, bending, and rotation. Statistically significant variation of spinal stiffness was observed between the patients. CONCLUSION This result confirms that spinal biomechanics is patient-specific, which should be taken into consideration to individualize surgical treatment.
What’s the best method? Comparison of different short forms oft he Pathological Narcissism Inventory
Resumo:
Recent research emphasizes the various facets of narcissism. As a consequence, newly developed questionnaires for narcissism have a large number of subscales and items. However, for the daily use in research and practice, short measures are crucial. In this study we compare different short forms of the Pathological Narcissism Questionnaire, a 54 item measure with seven subscales. In different samples (total N>2000) we applied different theoretical models to construct short forms of approximately 20 items. In particular, we compared IRT, item-total correlation, and factor loading based short forms and versions based on content validity and random selection. In all versions the original subscale structure was preserved. Results show that the short forms all have high correlations with the original version. Furthermore, correlations with criterion validation measures were comparable. We conclude that the item number can be reduced substantially without loosing information. Pros and cons of the different reduction methods are discussed.