31 resultados para Hallmarks.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chronic kidney diseases including glomerulonephritis are often accompanied by acute or chronic inflammation that leads to an increase in extracellular matrix (ECM) production and subsequent glomerulosclerosis. Glomerulonephritis is one of the leading causes for end-stage renal failure with high morbidity and mortality, and there are still only a limited number of drugs for treatment available. In this MiniReview, we discuss the possibility of targeting sphingolipids, specifically the sphingosine kinase 1 (SphK1) and sphingosine 1-phosphate (S1P) pathway, as new therapeutic strategy for the treatment of glomerulonephritis, as this pathway was demonstrated to be dysregulated under disease conditions. Sphingosine 1-phosphate is a multifunctional signalling molecule, which was shown to influence several hallmarks of glomerulonephritis including mesangial cell proliferation, renal inflammation and fibrosis. Most importantly, the site of action of S1P determines the final effect on disease progression. Concerning renal fibrosis, extracellular S1P acts pro-fibrotic via activation of cell surface S1P receptors, whereas intracellular S1P was shown to attenuate the fibrotic response. Interference with S1P signalling by treatment with FTY720, an S1P receptor modulator, resulted in beneficial effects in various animal models of chronic kidney diseases. Also, sonepcizumab, a monoclonal anti-S1P antibody that neutralizes extracellular S1P, and a S1P-degrading recombinant S1P lyase are promising new strategies for the treatment of glomerulonephritis. In summary, especially due to the bifunctionality of S1P, the SphK1/S1P pathway provides multiple target sites for the treatment of chronic kidney diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Regardless of the mechanisms that initiate the increase in blood pressure, functional and structural changes in the systemic vasculature are the final result of long-standing hypertension. These changes can occur in the macro- but also in the microvasculature. The supply of the tissues with oxygen, nutrients, and metabolites occurs almost exclusively in the microcirculation (which comprises resistance arterioles, capillaries and venules), and an adequate perfusion via the microcirculatory network is essential for the integrity of tissue and organ function. This review focuses on results from clinical studies in hypertensive patients, which have been performed in close cooperation with different clinical groups over the last three decades. Intravital microscopy was used to study skin microcirculation, microcatheters for the analysis of skeletal muscle microcirculation, the slit lamp for conjunctival microcirculation and the laser scanning ophthalmoscope for the measurement of the retinal capillary network. The first changes of the normal microcirculation can be found in about 93% of patients with essential hypertension, long before organ dysfunctions become clinically manifest. The earliest disorders were found in skin capillaries and thereafter in the retina and the skeletal muscle. In general, the disorders in the different areas were clearly correlated. While capillary rarefaction occurred mainly in the retina and the conjunctiva bulbi, in skin capillaries morphological changes were rare. A significant decrease of capillary erythrocyte velocities under resting conditions together with a marked damping of the postischemic hyperemia was found, both correlating with the duration of hypertension or WHO stage or the fundus hypertonicus stage. Also the mean oxygen tension in the skeletal muscle was correlated with the state of the disease. These data show that the microcirculatory disorders in hypertension are systemic and are hallmarks of the long-term complications of hypertension. There is now a large body of evidence that microvascular changes occur very early and may be important in their pathogenesis and progression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Exoerythrocytic Plasmodium parasites infect hepatocytes and develop to huge multinucleated schizonts inside a parasitophorous vacuole. Finally, thousands of merozoites are formed and released into the host cell cytoplasm by complete disintegration of the parasitophorous vacuole membrane. This, in turn, results in death and detachment of the infected hepatocyte, followed by the formation of merosomes. The fast growth of the parasite and host cell detachment are hallmarks of liver stage development and can easily be monitored. Here, we describe how to translate these observations into assays for characterizing parasite development. Additionally, other recently introduced techniques and tools to analyze and manipulate liver stage parasites are also discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent publications demonstrated that a fragment of a Neospora caninum ROP2 family member antigen represents a promising vaccine candidate. We here report on the cloning of the cDNA encoding this protein, N. caninum ROP2 family member 1 (NcROP2Fam-1), its molecular characterization and localization. The protein possesses the hallmarks of ROP2 family members and is apparently devoid of catalytic activity. NcROP2Fam-1 is synthesized as a pre-pro-protein that is matured to 2 proteins of 49 and 55 kDa that localize to rhoptry bulbs. Upon invasion the protein is associated with the nascent parasitophorous vacuole membrane (PVM), evacuoles surrounding the host cell nucleus and, in some instances, the surface of intracellular parasites. Staining was also observed within the cyst wall of 'cysts' produced in vitro. Interestingly, NcROP2Fam-1 was also detected on the surface of extracellular parasites entering the host cells and antibodies directed against NcROP2Fam-1-specific peptides partially neutralized invasion in vitro. We conclude that, in spite of the general belief that ROP2 family proteins are intracellular antigens, NcROP2Fam-1 can also be considered as an extracellular antigen, a property that should be taken into account in further experiments employing ROP2 family proteins as vaccines.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AIMS:Duchenne muscular dystrophy (DMD) is a muscle disease with serious cardiac complications. Changes in Ca(2+) homeostasis and oxidative stress were recently associated with cardiac deterioration, but the cellular pathophysiological mechanisms remain elusive. We investigated whether the activity of ryanodine receptor (RyR) Ca(2+) release channels is affected, whether changes in function are cause or consequence and which post-translational modifications drive disease progression. METHODS AND RESULTS:Electrophysiological, imaging, and biochemical techniques were used to study RyRs in cardiomyocytes from mdx mice, an animal model of DMD. Young mdx mice show no changes in cardiac performance, but do so after ∼8 months. Nevertheless, myocytes from mdx pups exhibited exaggerated Ca(2+) responses to mechanical stress and 'hypersensitive' excitation-contraction coupling, hallmarks of increased RyR Ca(2+) sensitivity. Both were normalized by antioxidants, inhibitors of NAD(P)H oxidase and CaMKII, but not by NO synthases and PKA antagonists. Sarcoplasmic reticulum Ca(2+) load and leak were unchanged in young mdx mice. However, by the age of 4-5 months and in senescence, leak was increased and load was reduced, indicating disease progression. By this age, all pharmacological interventions listed above normalized Ca(2+) signals and corrected changes in ECC, Ca(2+) load, and leak. CONCLUSION:Our findings suggest that increased RyR Ca(2+) sensitivity precedes and presumably drives the progression of dystrophic cardiomyopathy, with oxidative stress initiating its development. RyR oxidation followed by phosphorylation, first by CaMKII and later by PKA, synergistically contributes to cardiac deterioration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Results of studies of the static and dynamic dielectric properties in rod-like 4-n-octyloxy-4'-cyanobiphenyl (8OCB) with isotropic (I)–nematic (N)–smectic A (SmA)–crystal (Cr) mesomorphism, combined with measurements of the low-frequency nonlinear dielectric effect and heat capacity are presented. The analysis is supported by the derivative-based and distortion-sensitive transformation of experimental data. Evidence for the I–N and N–SmA pretransitional anomalies, indicating the influence of tricritical behavior, is shown. It has also been found that neither the N phase nor the SmA phase are uniform and hallmarks of fluid–fluid crossovers can be detected. The dynamics, tested via the evolution of the primary relaxation time, is clearly non-Arrhenius and described via τ(T) = τc(T−TC)−phgr. In the immediate vicinity of the I–N transition a novel anomaly has been found: Δτ ∝ 1/(T − T*), where T* is the temperature of the virtual continuous transition and Δτ is the excess over the 'background behavior'. Experimental results are confronted with the comprehensive Landau–de Gennes theory based modeling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The incidence of HIV encephalopathies was determined in an ongoing consecutive autopsy study. Among 345 patients who died from AIDS in Switzerland during 1981-1990, 68 (19%) showed morphological evidence of HIV encephalopathy. Two major histopathological manifestations were observed. Progressive diffuse leukoencephalopathy (PDL) was present in 33 cases and is characterized by a diffuse loss of myelin staining in the deep white matter of the cerebral and cerebellar hemispheres, with scattered multinucleated giant cells but little or no inflammatory reaction. Multinucleated giant cell encephalitis (MGCE) was diagnosed in 32 cases; it's hallmarks are accumulations of multinucleated giant cells with prominent inflammatory reaction and focal necroses. In 3 patients both types of lesions overlapped. Brain tissue from 27 patients was analyzed for the presence of HIV gag sequences using the polymerase chain reaction (PCR) with primers encoding a 109 base pair segment of the viral gene. Amplification succeeded in all patients with clinical and histopathological evidence for HIV encephalopathy but was absent in AIDS patients with opportunistic bacterial, parasitic and/or viral infections. Potential mechanisms by which HIV exerts it's adverse effects on the human CNS are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CASPARIAN STRIP MEMBRANE DOMAIN PROTEINS (CASPs) are four-membrane-span proteins that mediate the deposition of Casparian strips in the endodermis by recruiting the lignin polymerization machinery. CASPs show high stability in their membrane domain, which presents all the hallmarks of a membrane scaffold. Here, we characterized the large family of CASP-like (CASPL) proteins. CASPLs were found in all major divisions of land plants as well as in green algae; homologs outside of the plant kingdom were identified as members of the MARVEL protein family. When ectopically expressed in the endodermis, most CASPLs were able to integrate the CASP membrane domain, which suggests that CASPLs share with CASPs the propensity to form transmembrane scaffolds. Extracellular loops are not necessary for generating the scaffold, since CASP1 was still able to localize correctly when either one of the extracellular loops was deleted. The CASP first extracellular loop was found conserved in euphyllophytes but absent in plants lacking Casparian strips, an observation that may contribute to the study of Casparian strip and root evolution. In Arabidopsis (Arabidopsis thaliana), CASPL showed specific expression in a variety of cell types, such as trichomes, abscission zone cells, peripheral root cap cells, and xylem pole pericycle cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coarse semantic encoding and broad categorization behavior are the hallmarks of the right cerebral hemisphere's contribution to language processing. We correlated 40 healthy subjects' breadth of categorization as assessed with Pettigrew's category width scale with lateral asymmetries in perceptual and representational space. Specifically, we hypothesized broader category width to be associated with larger leftward spatial biases. For the 20 men, but not the 20 women, this hypothesis was confirmed both in a lateralized tachistoscopic task with chimeric faces and a random digit generation task; the higher a male participant's score on category width, the more pronounced were his left-visual field bias in the judgement of chimeric faces and his small-number preference in digit generation ("small" is to the left of "large" in number space). Subjects' category width was unrelated to lateral displacements in a blindfolded tactile-motor rod centering task. These findings indicate that visual-spatial functions of the right hemisphere should not be considered independent of the same hemisphere's contribution to language. Linguistic and spatial cognition may be more tightly interwoven than is currently assumed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A 9-year-old Boxer dog was referred to the Veterinary Teaching Hospital of the University of Bern for a history of chronic neck pain and gait problems, which rapidly progressed to a non-ambulatory status. Magnetic resonance imaging (MRI) examination of the head revealed a large intra-axial space-occupying lesion that was divided in two portions interconnected by a thin isthmus at the level of the cerebellar tentorium. Histopathology revealed a biphasic malignant neoplasm composed of neuroepithelial and mesenchymal elements. The former displayed characteristics of conventional anaplastic oligodendroglioma involving brisk mitotic activity and glomeruloid microvascular proliferation on a background of a fibrillary round cells with "honeycomb-like" perinuclear vacuolation. Conversely, the sarcomatous moiety exhibited haphazard fascicles of spindle cells amidst an intricate mesh of pericellular basal lamina and broad bands of collagen. Both tumor cell populations immunoreacted for Olig-2 and – to a lesser extent – GFAP. In addition, the sarcomatous areas focally expressed vimentin, muscular actin, and smooth muscle actin. "Oligosarcoma" - an exquisitely uncommon pattern of oligodendroglial malignancy in humans - has not previously been reported to affect dogs, although oligodendroglioma is a common CNS tumor in this species. Whether canine oligosarcoma shares with its human counterpart not only morphological aspects, but also molecular signatures, clinical behavior and responsiveness to therapy merits further investigation. In humans, oligodendroglial differentiation tends to confer significant clinical advantage with respect to prognosis and adjuvant treatment options. The awareness of such hallmarks and the investigation of their impact on prognosis are crucial for improved therapeutical strategies in dogs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Disruption of the blood-brain and blood-spinal cord barriers (BBB and BSCB, respectively) and immune cell infiltration are early pathophysiological hallmarks of multiple sclerosis (MS), its animal model experimental autoimmune encephalomyelitis (EAE), and neuromyelitis optica (NMO). However, their contribution to disease initiation and development remains unclear. In this study, we induced EAE in lys-eGFP-ki mice and performed single, nonterminal intravital imaging to investigate BSCB permeability simultaneously with the kinetics of GFP(+) myeloid cell infiltration. We observed a loss in BSCB integrity within a day of disease onset, which paralleled the infiltration of GFP(+) cells into the CNS and lasted for ∼4 d. Neutrophils accounted for a significant proportion of the circulating and CNS-infiltrating myeloid cells during the preclinical phase of EAE, and their depletion delayed the onset and reduced the severity of EAE while maintaining BSCB integrity. We also show that neutrophils collected from the blood or bone marrow of EAE mice transmigrate more efficiently than do neutrophils of naive animals in a BBB cell culture model. Moreover, using intravital videomicroscopy, we demonstrate that the IL-1R type 1 governs the firm adhesion of neutrophils to the inflamed spinal cord vasculature. Finally, immunostaining of postmortem CNS material obtained from an acutely ill multiple sclerosis patient and two neuromyelitis optica patients revealed instances of infiltrated neutrophils associated with regions of BBB or BSCB leakage. Taken together, our data provide evidence that neutrophils are involved in the initial events that take place during EAE and that they are intimately linked with the status of the BBB/BSCB.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE Graves' orbitopathy (GO) is an extraocular eye disease with symptoms ranging from minor discomfort from dry eyes to strabismus and visual loss. One of the hallmarks of active GO is visible hyperemia at the insertion of the extraocular muscles. The aim of the present study was to evaluate the use of enhanced-depth imaging spectral domain anterior segment optical coherence tomography (EDI SD AS-OCT) for detecting pathological changes in horizontal recti muscles of patients with GO. METHODS Prospective cross sectional study of 27 eyes. Only women were included. EDI AS-OCT was used to measure the thickness of the tendons of the horizontal recti muscles in a predefined area in patients with GO and healthy controls. RESULTS EDI AS-OCT was able to image the tendons of the horizontal recti muscles in both healthy controls and patients suffering from GO. The mean thickness of the medial rectus muscle (MR) tendon was 256.4 μm [±17.13 μm standard deviation (SD)] in the GO group and, therefore, significantly thicker (p = 0.046) than in the healthy group which had a mean thickness of 214.7 μm (±5.516 μm SD). There was no significant difference in the mean thickness of the tendon of the lateral recti muscles (LRs) between these groups. CONCLUSION This is the first report showing that EDI AS-OCT is suitable to detect swelling at the insertion site of the MR muscle in GO. MR tendon thickness may be a useful parameter to monitor activity in these patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND There is evidence that tumour-stroma interactions have a major role in the neoplastic progression of pancreatic ductal adenocarcinoma (PDAC). Tumour budding is thought to reflect the process of epithelial-mesenchymal transition (EMT); however, the relationship between tumour buds and EMT remains unclear. Here we characterize the tumour-budding- and stromal cells in PDAC at protein and mRNA levels concerning factors involved in EMT. METHODS mRNA in situ hybridisation and immunostaining for E-cadherin, β-catenin, SNAIL1, ZEB1, ZEB2, N-cadherin and TWIST1 were assessed in the main tumour, tumour buds and tumour stroma on multipunch tissue microarrays from 120 well-characterised PDACs and associated with the clinicopathological features, including peritumoural (PTB) and intratumoural (ITB) budding. RESULTS Tumour-budding cells showed increased levels of ZEB1 (P<0.0001) and ZEB2 (P=0.0119) and reduced E-cadherin and β-catenin (P<0.0001, each) compared with the main tumour. Loss of membranous β-catenin in the main tumour (P=0.0009) and tumour buds (P=0.0053), without nuclear translocation, as well as increased SNAIL1 in tumour and stromal cells (P=0.0002, each) correlated with high PTB. ZEB1 overexpression in the main tumour-budding and stromal cells was associated with high ITB (P=0.0084; 0.0250 and 0.0029, respectively) and high PTB (P=0.0005; 0.0392 and 0.0007, respectively). ZEB2 overexpression in stromal cells correlated with higher pT stage (P=0.03), lymphatic invasion (P=0.0172) and lymph node metastasis (P=0.0152). CONCLUSIONS In the tumour microenvironment of phenotypically aggressive PDAC, tumour-budding cells express EMT hallmarks at protein and mRNA levels underlining their EMT-type character and are surrounded by stromal cells expressing high levels of the E-cadherin repressors ZEB1, ZEB2 and SNAIL1, this being strongly associated with the tumour-budding phenotype. Moreover, our findings suggest the existence of subtypes of stromal cells in PDAC with phenotypical and functional heterogeneity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ellis-van Creveld (EvC) syndrome is a human autosomal recessive disorder caused by a mutation in either the EVC or EVC2 gene, and presents with short limbs, polydactyly, and ectodermal and heart defects. The aim of this study was to understand the pathologic basis by which deletions in the EVC2 gene lead to chondrodysplastic dwarfism and to describe the morphologic, immunohistochemical, and molecular hallmarks of EvC syndrome in cattle. Five Grey Alpine calves, with a known mutation in the EVC2 gene, were autopsied. Immunohistochemistry was performed on bone using antibodies to collagen II, collagen X, sonic hedgehog, fibroblast growth factor 2, and Ki67. Reverse transcription polymerase chain reaction was performed to analyze EVC1 and EVC2 gene expression. Autopsy revealed long bones that were severely reduced in length, as well as genital and heart defects. Collagen II was detected in control calves in the resting, proliferative, and hypertrophic zones and in the primary and secondary spongiosa, with a loss of labeling in the resting zone of 2 dwarfs. Collagen X was expressed in hypertrophic zone in the controls but was absent in the EvC cases. In affected calves and controls, sonic hedgehog labeled hypertrophic chondrocytes and primary and secondary spongiosa similarly. FGF2 was expressed in chondrocytes of all growth plate zones in the control calves but was lost in most EvC cases. The Ki67 index was lower in cases compared with controls. EVC and EVC2 transcripts were detected. Our data suggest that EvC syndrome of Grey Alpine cattle is a disorder of chondrocyte differentiation, with accelerated differentiation and premature hypertrophy of chondrocytes, and could be a spontaneous model for the equivalent human disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Each year about 650,000 Europeans die from stroke and a similar number lives with the sequelae of multiple sclerosis (MS). Stroke and MS differ in their etiology. Although cause and likewise clinical presentation set the two diseases apart, they share common downstream mechanisms that lead to damage and recovery. Demyelination and axonal injury are characteristics of MS but are also observed in stroke. Conversely, hallmarks of stroke, such as vascular impairment and neurodegeneration, are found in MS. However, the most conspicuous common feature is the marked neuroinflammatory response, marked by glia cell activation and immune cell influx. In MS and stroke the blood-brain barrier is disrupted allowing bone marrow-derived macrophages to invade the brain in support of the resident microglia. In addition, there is a massive invasion of auto-reactive T-cells into the brain of patients with MS. Though less pronounced a similar phenomenon is also found in ischemic lesions. Not surprisingly, the two diseases also resemble each other at the level of gene expression and the biosynthesis of other proinflammatory mediators. While MS has traditionally been considered to be an autoimmune neuroinflammatory disorder, the role of inflammation for cerebral ischemia has only been recognized later. In the case of MS the long track record as neuroinflammatory disease has paid off with respect to treatment options. There are now about a dozen of approved drugs for the treatment of MS that specifically target neuroinflammation by modulating the immune system. Interestingly, experimental work demonstrated that drugs that are in routine use to mitigate neuroinflammation in MS may also work in stroke models. Examples include Fingolimod, glatiramer acetate, and antibodies blocking the leukocyte integrin VLA-4. Moreover, therapeutic strategies that were discovered in experimental autoimmune encephalomyelitis (EAE), the animal model of MS, turned out to be also effective in experimental stroke models. This suggests that previous achievements in MS research may be relevant for stroke. Interestingly, the converse is equally true. Concepts on the neurovascular unit that were developed in a stroke context turned out to be applicable to neuroinflammatory research in MS. Examples include work on the important role of the vascular basement membrane and the BBB for the invasion of immune cells into the brain. Furthermore, tissue plasminogen activator (tPA), the only established drug treatment in acute stroke, modulates the pathogenesis of MS. Endogenous tPA is released from endothelium and astroglia and acts on the BBB, microglia and other neuroinflammatory cells. Thus, the vascular perspective of stroke research provides important input into the mechanisms on how endothelial cells and the BBB regulate inflammation in MS, particularly the invasion of immune cells into the CNS. In the current review we will first discuss pathogenesis of both diseases and current treatment regimens and will provide a detailed overview on pathways of immune cell migration across the barriers of the CNS and the role of activated astrocytes in this process. This article is part of a Special Issue entitled: Neuro inflammation: A common denominator for stroke, multiple sclerosis and Alzheimer's disease, guest edited by Helga de Vries and Markus Swaninger.