47 resultados para HIGH-DIVERSITY REFORESTATION
Resumo:
Complementarity that leads to more efficient resource use is presumed to be a key mechanism explaining positive biodiversity–productivity relationships but has been described solely for experimental set-ups with controlled environmental settings or for very short gradients of abiotic conditions, land-use intensity and biodiversity. Therefore, we analysed plant diversity effects on nitrogen dynamics across a broad range of Central European grasslands. The 15N natural abundance in soil and plant biomass reflects the net effect of processes affecting ecosystem N dynamics. This includes the mechanism of complementary resource utilization that causes a decrease in the 15N isotopic signal. We measured plant species richness, natural abundance of 15N in soil and plants, above-ground biomass of the community and three single species (an herb, grass and legume) and a variety of additional environmental variables in 150 grassland plots in three regions of Germany. To explore the drivers of the nitrogen dynamics, we performed several analyses of covariance treating the 15N isotopic signals as a function of plant diversity and a large set of covariates. Increasing plant diversity was consistently linked to decreased δ15N isotopic signals in soil, above-ground community biomass and the three single species. Even after accounting for multiple covariates, plant diversity remained the strongest predictor of δ15N isotopic signals suggesting that higher plant diversity leads to a more closed nitrogen cycle due to more efficient nitrogen use. Factors linked to increased δ15N values included the amount of nitrogen taken up, soil moisture and land-use intensity (particularly fertilization), all indicators of the openness of the nitrogen cycle due to enhanced N-turnover and subsequent losses. Study region was significantly related to the δ15N isotopic signals indicating that regional peculiarities such as former intensive land use could strongly affect nitrogen dynamics. Synthesis. Our results provide strong evidence that the mechanism of complementary resource utilization operates in real-world grasslands where multiple external factors affect nitrogen dynamics. Although single species may differ in effect size, actively increasing total plant diversity in grasslands could be an option to more effectively use nitrogen resources and to reduce the negative environmental impacts of nitrogen losses.
Resumo:
Detecting small amounts of genetic subdivision across geographic space remains a persistent challenge. Often a failure to detect genetic structure is mistaken for evidence of panmixia, when more powerful statistical tests may uncover evidence for subtle geographic differentiation. Such slight subdivision can be demographically and evolutionarily important as well as being critical for management decisions. We introduce here a method, called spatial analysis of shared alleles (SAShA), that detects geographically restricted alleles by comparing the spatial arrangement of allelic co-occurrences with the expectation under panmixia. The approach is allele-based and spatially explicit, eliminating the loss of statistical power that can occur with user-defined populations and statistical averaging within populations. Using simulated data sets generated under a stepping-stone model of gene flow, we show that this method outperforms spatial autocorrelation (SA) and UST under common real-world conditions: at relatively high migration rates when diversity is moderate or high, especially when sampling is poor. We then use this method to show clear differences in the genetic patterns of 2 nearshore Pacific mollusks, Tegula funebralis (5 Chlorostoma funebralis) and Katharina tunicata, whose overall patterns of within-species differentiation are similar according to traditional population genetics analyses. SAShA meaningfully complements UST/FST, SA, and other existing geographic genetic analyses and is especially appropriate for evaluating species with high gene flow and subtle genetic differentiation.
Resumo:
While bryophytes greatly contribute to plant diversity of semi-natural grasslands, little is known about the relationships between land-use intensity, productivity, and bryophyte diversity in these habitats. We recorded vascular plant and bryophyte vegetation in 85 agricultural used grasslands in two regions in northern and central Germany and gathered information on land-use intensity. To assess grassland productivity, we harvested aboveground vascular plant biomass and analyzed nutrient concentrations of N, P, K, Ca and Mg. Further we calculated mean Ellenberg indicator values of vascular plant vegetation. We tested for effects of land-use intensity and productivity on total bryophyte species richness and on the species richness of acrocarpous (small & erect) and pleurocarpous (creeping, including liverworts) growth forms separately. Bryophyte species were found in almost all studied grasslands, but species richness differed considerably between study regions in northern Germany (2.8 species per 16 m2) and central Germany (6.4 species per 16 m2) due environmental differences as well as land-use history. Increased fertilizer application, coinciding with high mowing frequency, reduced bryophyte species richness significantly. Accordingly, productivity estimates such as plant biomass and nitrogen concentration were strongly negatively related to bryophyte species richness, although productivity decreased only pleurocarpous species. Ellenberg indicator values for nutrients proved to be useful indicators of species richness and productivity. In conclusion, bryophyte composition was strongly dependent on productivity, with smaller bryophytes that were likely negatively affected by greater competition for light. Intensive land-use, however, can also indirectly decrease bryophyte species richness by promoting grassland productivity. Thus, increasing productivity is likely to cause a loss of bryophyte species and a decrease in species diversity.
Resumo:
Major histocompatibility complex (MHC) antigen-presenting genes are the most variable loci in vertebrate genomes. Host-parasite co-evolution is assumed to maintain the excessive polymorphism in the MHC loci. However, the molecular mechanisms underlying the striking diversity in the MHC remain contentious. The extent to which recombination contributes to the diversity at MHC loci in natural populations is still controversial, and there have been only few comparative studies that make quantitative estimates of recombination rates. In this study, we performed a comparative analysis for 15 different ungulates species to estimate the population recombination rate, and to quantify levels of selection. As expected for all species, we observed signatures of strong positive selection, and identified individual residues experiencing selection that were congruent with those constituting the peptide-binding region of the human DRB gene. However, in addition for each species, we also observed recombination rates that were significantly different from zero on the basis of likelihood-permutation tests, and in other non-quantitative analyses. Patterns of synonymous and non-synonymous sequence diversity were consistent with differing demographic histories between species, but recent simulation studies by other authors suggest inference of selection and recombination is likely to be robust to such deviations from standard models. If high rates of recombination are common in MHC genes of other taxa, re-evaluation of many inference-based phylogenetic analyses of MHC loci, such as estimates of the divergence time of alleles and trans-specific polymorphism, may be required.
Resumo:
In order to explore the genetic diversity within Echinococcus multilocularis (E. multilocularis), the cestode responsible for the alveolar echinococcosis (AE) in humans, a microsatellite, composed of (CA) and (GA) repeats and designated EmsB, was isolated and characterized in view of its nature and potential field application. PCR-amplification with specific primers exhibited a high degree of size polymorphism between E. multilocularis and Echinococcus granulosus sheep (G1) and camel (G6) strains. Fluorescent-PCR was subsequently performed on a panel of E. multilocularis isolates to assess intra-species polymorphism level. EmsB provided a multi-peak profile, characterized by tandemly repeated microsatellite sequences in the E. multilocularis genome. This "repetition of repeats" feature provided to EmsB a high discriminatory power in that eight clusters, supported by bootstrap p-values larger than 95%, could be defined among the tested E. multilocularis samples. We were able to differentiate not only the Alaskan from the European samples, but also to detect different European isolate clusters. In total, 25 genotypes were defined within 37 E. multilocularis samples. Despite its complexity, this tandem repeated multi-loci microsatellite possesses the three important features for a molecular marker, i.e. sensitivity, repetitiveness and discriminatory power. It will permit assessing the genetic polymorphism of E. multilocularis and to investigate its spatial distribution in detail.
Resumo:
BACKGROUND: The arginine-vasopressin 1a receptor has been identified as a key determinant for social behaviour in Microtus voles, humans and other mammals. Nevertheless, the genetic bases of complex phenotypic traits like differences in social and mating behaviour among species and individuals remain largely unknown. Contrary to previous studies focusing on differences in the promotor region of the gene, we investigate here the level of functional variation in the coding region (exon 1) of this locus. RESULTS: We detected high sequence diversity between higher mammalian taxa as well as between species of the genus Microtus. This includes length variation and radical amino acid changes, as well as the presence of distinct protein variants within individuals. Additionally, negative selection prevails on most parts of the first exon of the arginine-vasopressin receptor 1a (avpr1a) gene but it contains regions with higher rates of change that harbour positively selected sites. Synonymous and non-synonymous substitution rates in the avpr1a gene are not exceptional compared to other genes, but they exceed those found in related hormone receptors with similar functions. DISCUSSION: These results stress the importance of considering variation in the coding sequence of avpr1a in regards to associations with life history traits (e.g. social behaviour, mating system, habitat requirements) of voles, other mammals and humans in particular.
Resumo:
The accurate reconstruction of sea surface temperature (SST) history in climate-sensitive regions (e.g. tropical and polar oceans) became a challenging task in palaeoceanographic research. Biogenic shell carbonate SST proxies successfully developed for tropical regions often fail in cool water environments. Their major regional shortcomings and the cryptic diversity now found within the major high latitude proxy carrier Neogloboquadrina pachyderma (sin.) highlight an urgent need to explore complementary SST proxies for these cool-water regions. Here we incorporate the genetic component into a calibration study of a new SST proxy for the high latitudes. We found that the calcium isotopic composition (δ44/40Ca) of calcite from genotyped net catches and core-top samples of the planktonic foraminifera Neogloboquadrina pachyderma (sin.) is related to temperature and unaffected by genetic variations. The temperature sensitivity has been found to be 0.17 (±0.02)‰ per 1°C, highlighting its potential for downcore applications in open marine cool-water environments. Our results further indicate that in extreme polar environments, below a critical threshold temperature of 2.0 (±0.5)°C associated with salinities below 33.0 (±0.5)‰, a prominent shift in biomineralization affects the δ44/40Ca of genotyped and core-top N. pachyderma (sin.), becoming insensitive to temperature. These findings highlight the need of more systematic calibration studies on single planktonic foraminiferal species in order to unravel species-specific factors influencing the temperature sensitivity of Ca isotope fractionation and to validate the proxies' applicability.
Resumo:
In many environments land use intensification is likely to result in a decrease in species richness and in an increase in eutrophication. Although the importance of both factors for higher trophic levels such as insect herbivores is well documented, their impact has rarely been studied in combination. Herbivorous insects have a strong impact on the functioning of ecosystems and it is therefore important to understand how they are affected by eutrophication in high or low diversity environments. We used a grassland biodiversity experiment to investigate the combined effect of fertilization and plant diversity loss on the fitness of the generalist grasshopper Chorthippus parallelus by rearing grasshopper nymphs for four weeks in cages on unfertilized or fertilized (NPK) subplots across a species richness gradient from 1 to 60 plant species. Survival, the number of oothecae, body mass and the number of hatchlings were measured separately for each cage. Plant diversity had no effect on any of the grasshopper fitness measures, neither in unfertilized nor in fertilized plots. NPK-fertilization reduced grasshopper survival but increased body mass of males and reproductive success of the surviving females. Fertilization effects were not mediated by plant community structure, productivity or composition, suggesting that higher food plant quality was one of the main drivers. There was no interaction between plant diversity and fertilization on any of the measures. In conclusion, an increase in eutrophication, in both species-rich and species-poor grasslands, could lead to higher reproductive success and therefore higher abundances of herbivorous insects including insect pests, with fertilization effects dominating plant diversity effects.
Resumo:
We present the data of the 3rdresearch expedition of the European Dry Grasslands Group (EDGG), which was conducted in 2011 in two contrasting areas in NW Bulgarian mountains. The aim was to collect plot data for comparing Bulgarian dry grasslands with those of other parts of Europe in terms of syntaxonomy and biodiversity. We sampled 15 nested-plot series (0.0001–100 m²) and 68 normal plots(10 m²) covering the full variety of dry grassland types occurring in the Vratsa area (Balkan Mts.) and the Koprivshtitsa area (Sredna Gora Mt.). In the plots all vascular plants, terricolous non-vascular plants and a set of soil and other environmental parameters were determined. By applying modified TWIN-SPAN, we distinguished 10 floristically well characterised vegetation types at the association level. After comparison with the regional and European literature, we propose to place them within three classes and five orders: Festuco-Brometea with the orders Stipo pulcherrimae-Festucetalia pallentis (xerophilous dry grasslands of base-rich rocks; alliance Saturejion montanae), Brachypodietalia pinnate (meso-xeric, basiphilous grasslands; alliances Cirsio-Brachypodion pinnate and Chyrsopogono grylli-Danthonion calycinae),Calluno-Ulicetea with the order Nardetalia stricae (lowland to montane Nardus swards; alliance Violion caninae), and Koelerio-Corynephoretea with the orders Sedo-Scleranthetalia (open communities of skeleton-rich, acidic soils; alliance unclear) and Trifolioarvensis-Festucetalia ovinae(closed, meso-xeric, acidophilous grasslands; alliance Armerio rumelicae-Potentillion). The Violion caninae with the association Festuco rubrae-Genistelletum sagittalisis reported from Bulgaria for the first time, while the two occurring Koelerio-Corynephoretea communities are described as new associations (Cetrario aculeatae-Plantaginetum radicatae, Plantagini radicatae-Agrostietum capillaris). According to DCA the main floristic gradient was largely determined by soil conditions, differentiating the Festuco-Brometea communities on soils with high pH and high humus content from the Koelerio-Corynephoretea communities on acidic, humus-poor soils, while the Calluno-Ulicetea stands are the connecting link. At 10 m² Festuco-Brometea and Calluno-Ulicetea stands were richer in species across all investigated taxa and in vascular plants than Koelerio-Corynephoretea stands; the latter were richest in lichen species, while bryophyte richness did not differ significantly among syntaxa. Among the Bulgarian classes, the species-area relationships tended to be steepest in the Festuco-Brometea (i.e. highest beta diversity), but both alpha and beta diversity clearly fell behind the Festuco-Brometea communities in the Transylvanian Plateau, Romania, located less than 500 km north of the study region. Overall, our study contributes to a more adequate placement of the Bulgarian dry grasslands in the European syntaxonomic system and provides valuable data for large-scale analyses of biodiversity patterns
Resumo:
Tef [Eragrostis tef (Zucc.) Trotter] is an important staple food crop, especially in Ethiopia where it is annually grown on 2.8 million hectares of land. It is important for food security in the region, in spite of having a low yield, mainly due to lodging. In this study, 15 representative landraces as well as three improved varieties have been selected for in-depth characterization of many parameters, especially those implicated in yield. The genotypes were clustered into six groups, mainly based on agronomic traits and about 80% of the diversity in the genotypes could be explained on the basis of four principal components. In general, all traits investigated showed substantial diversity among genotypes, offering high chances for improving tef through direct selection or intra-specific hybridization. Moreover, in view of climatic changes, breeding with early maturing landraces such as Red dabi or Karadebi would be advantageous to cope with moisture scarcity during the later stage of crop maturity.
Resumo:
There is a wealth of smaller-scale studies on the effects of forest management on plant diversity. However, studies comparing plant species diversity in forests with different management types and intensity, extending over different regions and forest stages, and including detailed information on site conditions are missing. We studied vascular plants on 1500 20 m × 20 m forest plots in three regions of Germany (Schwäbische Alb, Hainich-Dün, Schorfheide-Chorin). In all regions, our study plots comprised different management types (unmanaged, selection cutting, deciduous and coniferous age-class forests, which resulted from clear cutting or shelterwood logging), various stand ages, site conditions, and levels of management-related disturbances. We analyzed how overall richness and richness of different plant functional groups (trees, shrubs, herbs, herbaceous species typically growing in forests and herbaceous light-demanding species) responded to the different management types. On average, plant species richness was 13% higher in age-class than in unmanaged forests, and did not differ between deciduous age-class and selection forests. In age-class forests of the Schwäbische Alb and Hainich-Dün, coniferous stands had higher species richness than deciduous stands. Among age-class forests, older stands with large quantities of standing biomass were slightly poorer in shrub and light-demanding herb species than younger stands. Among deciduous forests, the richness of herbaceous forest species was generally lower in unmanaged than in managed forests, and it was even 20% lower in unmanaged than in selection forests in Hainich-Dün. Overall, these findings show that disturbances by management generally increase plant species richness. This suggests that total plant species richness is not suited as an indicator for the conservation status of forests, but rather indicates disturbances.
Resumo:
Mycobacterium bovis populations in countries with persistent bovine tuberculosis usually show a prevalent spoligotype with a wide geographical distribution. This study applied mycobacterial interspersed repetitive-unit-variable-number tandem-repeat (MIRU-VNTR) typing to a random panel of 115 M. bovis isolates that are representative of the most frequent spoligotype in the Iberian Peninsula, SB0121. VNTR typing targeted nine loci: ETR-A (alias VNTR2165), ETR-B (VNTR2461), ETR-D (MIRU4, VNTR580), ETR-E (MIRU31, VNTR3192), MIRU26 (VNTR2996), QUB11a (VNTR2163a), QUB11b (VNTR2163b), QUB26 (VNTR4052), and QUB3232 (VNTR3232). We found a high degree of diversity among the studied isolates (discriminatory index [D] = 0.9856), which were split into 65 different MIRU-VNTR types. An alternative short-format MIRU-VNTR typing targeting only the four loci with the highest variability values was found to offer an equivalent discriminatory index. Minimum spanning trees using the MIRU-VNTR data showed the hypothetical evolution of an apparent clonal group. MIRU-VNTR analysis was also applied to the isolates of 176 animals from 15 farms infected by M. bovis SB0121; in 10 farms, the analysis revealed the coexistence of two to five different MIRU types differing in one to six loci, which highlights the frequency of undetected heterogeneity.
Resumo:
The treatment of high-risk prostate cancer (HRPCa) is a tremendous challenge for uro-oncologists. The identification of predictive moleculobiological markers allowing risk assessment of lymph node metastasis and systemic progression is essential in establishing effective treatment. In the current study, we investigate the prognostic potential of miR-205 in HRPCa study and validation cohorts, setting defined clinical endpoints for both. We demonstrate miR-205 to be significantly down-regulated in over 70% of the HRPCa samples analysed and that reconstitution of miR-205 causes inhibition of proliferation and invasiveness in prostate cancer (PCa) cell lines. Additionally, miR-205 is increasingly down-regulated in lymph node metastases compared to the primary tumour indicating that miR-205 plays a role in migration of PCa cells from the original location into extraprostatic tissue. Nevertheless, down-regulation of miR-205 in primary PCa was not correlated to the synchronous presence of metastasis and failed to predict the outcome for HRPCa patients. Moreover, we found a tendency for miR-205 up-regulation to correlate with an adverse outcome of PCa patients suggesting a pivotal role of miR-205 in tumourigenesis. Overall, we showed that miR-205 is involved in the development and metastasis of PCa, but failed to work as a useful clinical biomarker in HRPCa. These findings might have implications for the use of miR-205 as a prognostic or therapeutic target in HRPCa.
Resumo:
Horses were domesticated from the Eurasian steppes 5,000-6,000 years ago. Since then, the use of horses for transportation, warfare, and agriculture, as well as selection for desired traits and fitness, has resulted in diverse populations distributed across the world, many of which have become or are in the process of becoming formally organized into closed, breeding populations (breeds). This report describes the use of a genome-wide set of autosomal SNPs and 814 horses from 36 breeds to provide the first detailed description of equine breed diversity. F(ST) calculations, parsimony, and distance analysis demonstrated relationships among the breeds that largely reflect geographic origins and known breed histories. Low levels of population divergence were observed between breeds that are relatively early on in the process of breed development, and between those with high levels of within-breed diversity, whether due to large population size, ongoing outcrossing, or large within-breed phenotypic diversity. Populations with low within-breed diversity included those which have experienced population bottlenecks, have been under intense selective pressure, or are closed populations with long breed histories. These results provide new insights into the relationships among and the diversity within breeds of horses. In addition these results will facilitate future genome-wide association studies and investigations into genomic targets of selection.
Resumo:
This study compares aboveground and belowground carbon stocks and tree diversity in different cocoa cultivation systems in Bolivia: monoculture, simple agroforestry, and successional agroforestry, as well as fallow as a control. Since diversified, agroforestry-based cultivation systems are often considered important for sustainable development, we also evaluated the links between carbon stocks and tree diversity, as well as the role of organic certification in transitioning from monoculture to agroforestry. Biomass, tree diversity, and soil physiochemical parameters were sampled in 15 plots measuring 48 × 48 m. Semi-structured interviews with 52 cocoa farmers were used to evaluate the role of organic certification and farmers’ organizations (e.g., cocoa cooperatives) in promoting tree diversity. Total carbon stocks in simple agroforestry systems (128.4 ± 20 Mg ha−1) were similar to those on fallow plots (125.2 ± 10 Mg ha−1). Successional agroforestry systems had the highest carbon stocks (143.7 ± 5.3 Mg ha−1). Monocultures stored significantly less carbon than all other systems (86.3 ± 4.0 Mg ha−1, posterior probability P(Diff > 0) of 0.000–0.006). Among shade tree species, Schizolobium amazonicum, Centrolobium ochroxylum, and Anadenanthera sp. accumulated the most biomass. High-value timber species (S. amazonicum, C. ochroxylum, Amburana cearensis, and Swietenia macrophylla) accounted for 22.0 % of shade tree biomass. The Shannon index and tree species richness were highest in successional agroforestry systems. Cocoa plots on certified organic farms displayed significantly higher tree species richness than plots on non-certified farms. Thus, expanding the coverage of organic farmers’ organizations may be an effective strategy for fostering transitions from monoculture to agroforestry systems.