25 resultados para H2O
Resumo:
This paper describes the syntheses and characterization of two new copper(II) diphosphonates: [NH3(CH2)2NH3]2[Cu2(hedp)2]·H2O (1) and [NH3CH(CH3)CH2NH3]2[Cu2(hedp)2] (2) (hedp = 1-hydroxyethylidenediphosphonate). Both compounds exhibit similar one-dimensional linear chain structures. The symmetrical {Cu2(hedp)2} dimers are connected by edge-shared {CuO5} square pyramids and form infinite chains. The Cu(II) ions are alternately bridged by O–P–O groups and O atoms. The Cu–O–Cu angles are 95.8(1) and 96.1(1)° for 1 and 2, respectively. Their magnetic properties show moderately strong antiferromagnetic interactions in both compounds.
Resumo:
We present a new thermodynamic activity-composition model for di-trioctahedral chlorite in the system FeO–MgO–Al2O3–SiO2–H2O that is based on the Holland–Powell internally consistent thermodynamic data set. The model is formulated in terms of four linearly independent end-members, which are amesite, clinochlore, daphnite and sudoite. These account for the most important crystal-chemical substitutions in chlorite, the Fe–Mg, Tschermak and di-trioctahedral substitution. The ideal part of end-member activities is modeled with a mixing-on-site formalism, and non-ideality is described by a macroscopic symmetric (regular) formalism. The symmetric interaction parameters were calibrated using a set of 271 published chlorite analyses for which robust independent temperature estimates are available. In addition, adjustment of the standard state thermodynamic properties of sudoite was required to accurately reproduce experimental brackets involving sudoite. This new model was tested by calculating representative P–T sections for metasediments at low temperatures (<400 °C), in particular sudoite and chlorite bearing metapelites from Crete. Comparison between the calculated mineral assemblages and field data shows that the new model is able to predict the coexistence of chlorite and sudoite at low metamorphic temperatures. The predicted lower limit of the chloritoid stability field is also in better agreement with petrological observations. For practical applications to metamorphic and hydrothermal environments, two new semi-empirical chlorite geothermometers named Chl(1) and Chl(2) were calibrated based on the chlorite + quartz + water equilibrium (2 clinochlore + 3 sudoite = 4 amesite + 4 H2O + 7 quartz). The Chl(1) thermometer requires knowledge of the (Fe3+/ΣFe) ratio in chlorite and predicts correct temperatures for a range of redox conditions. The Chl(2) geothermometer which assumes that all iron in chlorite is ferrous has been applied to partially recrystallized detrital chlorite from the Zone houillère in the French Western Alps.
Resumo:
Guidelines on the diagnosis and management of urinary tract infections in childhood do not address the issue of abnormalities in Na(+), K(+), Cl(-) and acid-base balance. We have conducted a narrative review of the literature with the aim to describe the underlying mechanisms of these abnormalities and to suggest therapeutic maneuvers. Abnormalities in Na(+), K(+), Cl(-) and acid-base balance are common in newborns and infants and uncommon in children of more than 3 years of age. Such abnormalities may result from factitious laboratory results, from signs and symptoms (such as excessive sweating, poor fluid intake, vomiting and passage of loose stools) of the infection itself, from a renal dysfunction, from improper parenteral fluid management or from the prescribed antimicrobials. In addition, two transient renal tubular dysfunctions may occur in infants with infectious renal parenchymal involvement: a reduced capacity to concentrate urine and pseudohypoaldosteronism secondary to renal tubular unresponsiveness to aldosterone that presents with hyponatremia, hyperkalemia and acidosis. In addition to antimicrobials, volume resuscitation with an isotonic solution is required in these children. In secondary pseudohypoaldosteronism, isotonic solutions (such as 0.9 % saline or lactated Ringer) correct not only the volume depletion but also the hyperkalemia and acidosis. In conclusion, our review suggests that in infants with infectious renal parenchymal involvement, non-renal and renal causes concur to cause fluid volume depletion and abnormalities in electrolyte and acid-base balance, most frequently hyponatremia.
Resumo:
Since OSIRIS started acquiring high-resolution observations of the surface of the nucleus of comet 67P/Churyumov-Gerasimenko, over one hundred meter-sized bright spots have been identified in numerous types of geomorphologic regions, but mostly located in areas receiving low insolation. The bright spots are either clustered, in debris fields close to decameter-high cliffs, or isolated without structural relation to the surrounding terrain. They can be up to ten times brighter than the average surface of the comet at visible wavelengths and display a significantly bluer spectrum. They do not exhibit significant changes over a period of a few weeks. All these observations are consistent with exposure of water ice at the surface of boulders produced by dislocation of the weakly consolidated layers that cover large areas of the nucleus. Laboratory experiments show that under simulated comet surface conditions, analog samples acquire a vertical stratification with an uppermost porous mantle of refractory dust overlaying a layer of hard ice formed by recondensation or sintering under the insulating dust mantle. The evolution of the visible spectrophotometric properties of samples during sublimation is consistent with the contrasts of brightness and color seen at the surface of the nucleus. Clustered bright spots are formed by the collapse of overhangs that is triggered by mass wasting of deeper layers. Isolated spots might be the result of the emission of boulders at low velocity that are redepositioned in other regions.
Resumo:
With a combination of the Direct Simulation Monte Carlo (DSMC) calculation and test particle computation, the ballistic transport process of the hydroxyl radicals and oxygen atoms produced by photodissociation of water molecules in the coma of comet 67P/Churyumov-Gerasimenko is modelled. We discuss the key elements and essential features of such simulations which results can be compared with the remote-sensing and in situ measurements of cometary gas coma from the Rosetta mission at different orbital phases of this comet.
Resumo:
Context. Within the core accretion scenario of planetary formation, most simulations performed so far always assume the accreting envelope to have a solar composition. From the study of meteorite showers on Earth and numerical simulations, we know that planetesimals must undergo thermal ablation and disruption when crossing a protoplanetary envelope. Thus, once the protoplanet has acquired an atmosphere, not all planetesimals reach the core intact, i.e. the primordial envelope (mainly H and He) gets enriched in volatiles and silicates from the planetesimals. This change of envelope composition during the formation can have a significant effect on the final atmospheric composition and on the formation timescale of giant planets. Aims. We investigate the physical implications of considering the envelope enrichment of protoplanets due to the disruption of icy planetesimals during their way to the core. Particular focus is placed on the effect on the critical core mass for envelopes where condensation of water can occur. Methods. Internal structure models are numerically solved with the implementation of updated opacities for all ranges of metallicities and the software Chemical Equilibrium with Applications to compute the equation of state. This package computes the chemical equilibrium for an arbitrary mixture of gases and allows the condensation of some species, including water. This means that the latent heat of phase transitions is consistently incorporated in the total energy budget. Results. The critical core mass is found to decrease significantly when an enriched envelope composition is considered in the internal structure equations. A particularly strong reduction of the critical core mass is obtained for planets whose envelope metallicity is larger than Z approximate to 0.45 when the outer boundary conditions are suitable for condensation of water to occur in the top layers of the atmosphere. We show that this effect is qualitatively preserved even when the atmosphere is out of chemical equilibrium. Conclusions. Our results indicate that the effect of water condensation in the envelope of protoplanets can severely affect the critical core mass, and should be considered in future studies.