22 resultados para Green tires


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Indocyanine green (ICG) is a chemically labile compound which needs to be stabilized in aqueous media to be used in biomedical applications. In the present study, poly(ε-caprolactone) (PCL), a semi-crystalline polyester, was used to encapsulate and stabilize ICG in a hydrophobic environment. A hydrophobic and biocompatible nanocomposite was obtained by the process of encapsulating inorganic silica. ICG was embedded in the hydrophobic polymer coating by starting from a well-defined silica (Si) core of either 80 nm or 120 nm diameter, which served as a template for a ‘grafting from’ approach using ε-caprolactone. The obtained nanocomposite Si grafted PCL/ICG was based on silica nanoparticles grafted with PCL, in which ICG was adsorbed. The nanoparticles were characterized by IR spectroscopy, thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). The change in the surface charge and the colloidal stability of the nanoparticles was followed by zeta potential measurements. This approach of synthesizing nanocomposite-based ICG demonstrates a new route to stabilize ICG. We synthesized biocompatible nanoparticles containing a high ICG concentration and exhibiting excellent stability to aqueous decomposition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In most animals, significant increases in metabolic rate are due to activity and to feeding (known as apparent specific dynamic action). We determined the energetic costs of activity and feeding in adult green-lipped mussels (Perna canaliculus). Maximal metabolic rate was determined, using closed-chamber respirometry, during byssus re-attachment, during specific dynamic action after 16 h of feeding with Isochrysis galbana, and for the two activities combined, in 23 mussels. Metabolic rate was significantly elevated above rest by about 1.9-fold during byssus attachment (17.1 ± 1.53 μg O(2) h(-1) g(-1) whole mussel wet weight at rest, increased to 27.9 ± 0.91 μg O(2) h(-1) g(-1)), and by 2.2-fold after feeding (31.4 ± 1.20 μg O(2) h(-1) g(-1)). Combined feeding and byssus attachment led to a still higher metabolic rate (34.0 ± 1.23 μg O(2) h(-1) g(-1)). Behavior was also significantly altered, with mussels being almost continuously open during attachment and after feeding (90%-99% of the time); however, the time spent open during the day decreased, reaching a minimum of 52% ± 9% 3 days after feeding, and remained low (67%-82%) for the following 45-day starvation period. Significant diurnal differences were observed, with mussels continuously (92%-100%) open at night. The key findings from this study are that green-lipped mussels (1) have an aerobic scope of approximately 2-fold; (2) reach a higher metabolic rate during feeding than during activity, and the two combined can raise the metabolic rate higher still; (3) display a marked diurnal behavior.