38 resultados para Green biocides
Resumo:
Indocyanine green (ICG) is a chemically labile compound which needs to be stabilized in aqueous media to be used in biomedical applications. In the present study, poly(ε-caprolactone) (PCL), a semi-crystalline polyester, was used to encapsulate and stabilize ICG in a hydrophobic environment. A hydrophobic and biocompatible nanocomposite was obtained by the process of encapsulating inorganic silica. ICG was embedded in the hydrophobic polymer coating by starting from a well-defined silica (Si) core of either 80 nm or 120 nm diameter, which served as a template for a ‘grafting from’ approach using ε-caprolactone. The obtained nanocomposite Si grafted PCL/ICG was based on silica nanoparticles grafted with PCL, in which ICG was adsorbed. The nanoparticles were characterized by IR spectroscopy, thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). The change in the surface charge and the colloidal stability of the nanoparticles was followed by zeta potential measurements. This approach of synthesizing nanocomposite-based ICG demonstrates a new route to stabilize ICG. We synthesized biocompatible nanoparticles containing a high ICG concentration and exhibiting excellent stability to aqueous decomposition.
Resumo:
In most animals, significant increases in metabolic rate are due to activity and to feeding (known as apparent specific dynamic action). We determined the energetic costs of activity and feeding in adult green-lipped mussels (Perna canaliculus). Maximal metabolic rate was determined, using closed-chamber respirometry, during byssus re-attachment, during specific dynamic action after 16 h of feeding with Isochrysis galbana, and for the two activities combined, in 23 mussels. Metabolic rate was significantly elevated above rest by about 1.9-fold during byssus attachment (17.1 ± 1.53 μg O(2) h(-1) g(-1) whole mussel wet weight at rest, increased to 27.9 ± 0.91 μg O(2) h(-1) g(-1)), and by 2.2-fold after feeding (31.4 ± 1.20 μg O(2) h(-1) g(-1)). Combined feeding and byssus attachment led to a still higher metabolic rate (34.0 ± 1.23 μg O(2) h(-1) g(-1)). Behavior was also significantly altered, with mussels being almost continuously open during attachment and after feeding (90%-99% of the time); however, the time spent open during the day decreased, reaching a minimum of 52% ± 9% 3 days after feeding, and remained low (67%-82%) for the following 45-day starvation period. Significant diurnal differences were observed, with mussels continuously (92%-100%) open at night. The key findings from this study are that green-lipped mussels (1) have an aerobic scope of approximately 2-fold; (2) reach a higher metabolic rate during feeding than during activity, and the two combined can raise the metabolic rate higher still; (3) display a marked diurnal behavior.
Sarah Green: Notes from the Balkans. Locating Marginality and Ambiguity on the Greek-Albanian Border
Resumo:
Mountain socio-ecological systems produce valuable but complex ecosystem services resulting from biomes stratified by altitude and gravity. These systems are often managed and shaped by smallholders whose marginalization is exacerbated by uncertainties and a lack of policy attention. Human–environment interfaces in mountains hence require holistic policies. We analyse the potential of the Global Mountain Green Economy Agenda (GMGEA) in building awareness and thus prompting cross-sectoral policy strategies for sustainable mountain development. Considering the critique of the green economy presented at the Rio + 20 conference, we argue that the GMGEA can nevertheless structure knowledge and inform regional institutions about the complexity of mountain socio-ecological systems, a necessary pre-condition to prompt inter-agency collaboration and cross-sectoral policy formulation. After reviewing the content of the GMGEA, we draw on two empirical cases in the Pakistani and Nepali Himalayas. First, we show that lack of awareness has led to a sequence of fragmented interventions with unanticipated, and unwanted, consequences for communities. Second, using a green economy lens, we show how fragmentation could have been avoided and cross-sectoral policies yielded more beneficial results. Project fragmentation reflects disconnected or layered policies by government agencies, which inherently keep specialized agendas and have no incentive to collaborate. Awareness makes agencies more likely to collaborate and adopt cross-sectoral approaches, allowing them to target more beneficiaries, be more visible, and raise more funds. Nevertheless, we also identify four factors that may currently still limit the effect of the GMGEA: high costs of inter-agency collaboration, lack of legitimacy of the green economy, insufficiently-secured smallholder participation, and limited understanding of the mechanisms through which global agendas influence local policy.
Resumo:
BACKGROUND Contrast-enhanced diagnostic imaging techniques are considered useful in veterinary and human medicine to evaluate liver perfusion and focal hepatic lesions. Although hepatic diseases are a common occurrence in reptile medicine, there is no reference to the use of contrast-enhanced ultrasound (CEUS) and contrast-enhanced computed tomography (CECT) to evaluate the liver in lizards. Therefore, the aim of this study was to evaluate the pattern of change in echogenicity and attenuation of the liver in green iguanas (Iguana iguana) after administration of specific contrast media. RESULTS An increase in liver echogenicity and density was evident during CEUS and CECT, respectively. In CEUS, the mean ± SD (median; range) peak enhancement was 19.9% ± 7.5 (18.3; 11.7-34.6). Time to peak enhancement was 134.0 ± 125.1 (68.4; 59.6-364.5) seconds. During CECT, first visualization of the contrast medium was at 3.6 ± 0.5 (4; 3-4) seconds in the aorta, 10.7 ± 2.2 (10.5; 7-14) seconds in the hepatic arteries, and 15 ± 4.5 (14.5; 10-24) seconds in the liver parenchyma. Time to peak was 14.1 ± 3.4 (13; 11-21) and 31 ± 9.6 (29; 23-45) seconds in the aorta and the liver parenchyma, respectively. CONCLUSION CEUS and dynamic CECT are practical means to determine liver hemodynamics in green iguanas. Distribution of contrast medium in iguana differed from mammals. Specific reference ranges of hepatic perfusion for diagnostic evaluation of the liver in iguanas are necessary since the use of mammalian references may lead the clinician to formulate incorrect diagnostic suspicions.
Resumo:
Wireless networks have become more and more popular because of ease of installation, ease of access, and support of smart terminals and gadgets on the move. In the overall life cycle of providing green wireless technology, from production to operation and, finally, removal, this chapter focuses on the operation phase and summarizes insights in energy consumption of major technologies. The chapter also focuses on the edge of the network, comprising network access points (APs) and mobile user devices. It discusses particularities of most important wireless networking technologies: wireless access networks including 3G/LTE and wireless mesh networks (WMNs); wireless sensor networks (WSNs); and ad-hoc and opportunistic networks. Concerning energy efficiency, the chapter discusses challenges in access, wireless sensor, and ad-hoc and opportunistic networks.
Resumo:
Fatty acid derivatives are of central importance for plant immunity against insect herbivores; however, majorregulatory genes and the signals that modulate these defense metabolites are vastly understudied, especiallyin important agro-economic monocot species. Here we show that products and signals derived from a singleZea mays (maize) lipoxygenase (LOX), ZmLOX10, are critical for both direct and indirect defenses to herbiv-ory. We provide genetic evidence that two 13-LOXs, ZmLOX10 and ZmLOX8, specialize in providing substratefor the green leaf volatile (GLV) and jasmonate (JA) biosynthesis pathways, respectively. Supporting the spe-cialization of these LOX isoforms, LOX8 and LOX10 are localized to two distinct cellular compartments, indi-cating that the JA and GLV biosynthesis pathways are physically separated in maize. Reduced expression ofJA biosynthesis genes and diminished levels of JA in lox10 mutants indicate that LOX10-derived signaling isrequired for LOX8-mediated JA. The possible role of GLVs in JA signaling is supported by their ability to par-tially restore wound-induced JA levels in lox10 mutants. The impaired ability of lox10 mutants to produceGLVs and JA led to dramatic reductions in herbivore-induced plant volatiles (HIPVs) and attractiveness toparasitoid wasps. Because LOX10 is under circadian rhythm regulation, this study provides a mechanistic linkto the diurnal regulation of GLVs and HIPVs. GLV-, JA- and HIPV-deficient lox10 mutants display compro-mised resistance to insect feeding, both under laboratory and field conditions, which is strong evidence thatLOX10-dependent metabolites confer immunity against insect attack. Hence, this comprehensive gene toagro-ecosystem study reveals the broad implications of a single LOX isoform in herbivore defense.