17 resultados para Gratitude acts
Resumo:
Approximately 0.2 % of all angiosperms are classified as metal hyperaccumulators based on their extraordinarily high leaf metal contents, for example >1 % zinc, >0.1 % nickel or >0.01 % cadmium (Cd) in dry biomass. So far, metal hyperaccumulation has been considered to be a taxon-wide, constitutively expressed trait, the extent of which depends solely on available metal concentrations in the soil. Here we show that in the facultative metallophyte Arabidopsis halleri, both insect herbivory and mechanical wounding of leaves trigger an increase specifically in leaf Cd accumulation. Moreover, the Cd concentrations accumulated in leaves can serve as an elemental defense against herbivory by larvae of the Brassicaceae specialist small white (Pieris rapae), thus allowing the plant to take advantage of this non-essential trace element and toxin. Metal homeostasis genes are overrepresented in the systemic transcriptional response of roots to the wounding of leaves in A. halleri, supporting that leaf Cd accumulation is preceded by systemic signaling events. A similar, but quantitatively less pronounced transcriptional response was observed in A. thaliana, suggesting that the systemically regulated modulation of metal homeostasis in response to leaf wounding also occurs in non-hyperaccumulator plants. This is the first report of an environmental stimulus influencing metal hyperaccumulation.
Resumo:
Vertebrate limb induction is triggered in the lateral plate mesoderm (LPM) by a cascade of signaling events originating in the axial mesoderm. While it is known that Fgf, Wnt and retinoic acid (RA) signals are involved in this cascade, their precise regulatory hierarchy has not been determined in any species. tbx5 is the earliest gene expressed in the limb bud mesenchyme. Recently, another transcription factor, Prdm1, has been shown to be crucial for zebrafish forelimb development. Here, we show that Prdm1 is downstream of RA, Wnt2b and Tbx5 activity. We find that RA activity, but not Fgf signaling, is necessary for wnt2b expression. Fgf signaling is required for prdm1 expression in the fin bud, but is not necessary for the initiation of tbx5 expression. We propose a model in which RA signaling from the somitic mesoderm leads to activation of wnt2b expression in the intermediate mesoderm, which then signals to the LPM to trigger tbx5 expression. tbx5 is required for Fgf signaling in the limb bud leading to activation of prdm1 expression, which in turn is required for downstream activation of fgf10 expression.