41 resultados para Global Navigation Satellite System, Orbit Monitoring, Troposphere, Positioning


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Applications of the Global Navigation Satellite Systems (GNSS) to Earth Sciences are numerous. The International GNSS Service (IGS), a federation of government agencies, universities and research institutions, plays an increasingly critical role in support of GNSS–related research and engineering activities. This Technical Report 2013 includes contributions from the IGS Governing Board, the Central Bureau, Analysis Centers, Data Centers, station and network operators, and others highlighting status and important activities, changes and results that took place and were achieved during 2013.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Applications of the Global Navigation Satellite Systems (GNSS) to Earth Sciences are numerous. The International GNSS Service (IGS), a federation of government agencies, universities and research institutions, plays an increasingly critical role in support of GNSS–related research and engineering activities. This Technical Report 2014 includes contributions from the IGS Governing Board, the Central Bureau, Analysis Centers, Data Centers, station and network operators, and others highlighting status and important activities, changes and results that took place and were achieved during 2014.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Applications of the Global Navigation Satellite Systems (GNSS) to Earth Sciences are numerous. The International GNSS Service (IGS), a federation of government agencies, universities and research institutions, plays an increasingly critical role in support of GNSS–related research and engineering activities. This Technical Report 2015 includes contributions from the IGS Governing Board, the Central Bureau, Analysis Centers, Data Centers, station and network operators, and others highlighting status and important activities, changes and results that took place and were achieved during 2015.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Center for Orbit Determination in Europe (CODE) is contributing as a global Analysis center to the International GNSS Service (IGS) since many years. The processing of GPS and GLONASS data is well established in CODE’s ultra-rapid, rapid, and final product lines. With the introduction of new signals for the established and new GNSS, new challenges and opportunities are arising for the GNSS data management and processing. The IGS started the Multi-GNSS-EXperiment (MGEX) in 2012 in order to gain first experience with the new data formats and to develop new strategies for making optimal use of these additional measurements. CODE has started to contribute to IGS MGEX with a consistent, rigorously combined triple-system orbit solution (GPS, GLONASS, and Galileo). SLR residuals for the computed Galileo satellite orbits are of the order of 10 cm. Furthermore CODE established a GPS and Galileo clock solution. A quality assessment shows that these experimental orbit and clock products allow even a Galileo-only precise point positioning (PPP) with accuracies on the decimeter- (static PPP) to meter-level (kinematic PPP) for selected stations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lake water temperature (LWT) is an important driver of lake ecosystems and it has been identified as an indicator of climate change. Consequently, the Global Climate Observing System (GCOS) lists LWT as an essential climate variable. Although for some European lakes long in situ time series of LWT do exist, many lakes are not observed or only on a non-regular basis making these observations insufficient for climate monitoring. Satellite data can provide the information needed. However, only few satellite sensors offer the possibility to analyse time series which cover 25 years or more. The Advanced Very High Resolution Radiometer (AVHRR) is among these and has been flown as a heritage instrument for almost 35 years. It will be carried on for at least ten more years, offering a unique opportunity for satellite-based climate studies. Herein we present a satellite-based lake surface water temperature (LSWT) data set for European water bodies in or near the Alps based on the extensive AVHRR 1 km data record (1989–2013) of the Remote Sensing Research Group at the University of Bern. It has been compiled out of AVHRR/2 (NOAA-07, -09, -11, -14) and AVHRR/3 (NOAA-16, -17, -18, -19 and MetOp-A) data. The high accuracy needed for climate related studies requires careful pre-processing and consideration of the atmospheric state. The LSWT retrieval is based on a simulation-based scheme making use of the Radiative Transfer for TOVS (RTTOV) Version 10 together with ERA-interim reanalysis data from the European Centre for Medium-range Weather Forecasts. The resulting LSWTs were extensively compared with in situ measurements from lakes with various sizes between 14 and 580 km2 and the resulting biases and RMSEs were found to be within the range of −0.5 to 0.6 K and 1.0 to 1.6 K, respectively. The upper limits of the reported errors could be rather attributed to uncertainties in the data comparison between in situ and satellite observations than inaccuracies of the satellite retrieval. An inter-comparison with the standard Moderate-resolution Imaging Spectroradiometer (MODIS) Land Surface Temperature product exhibits RMSEs and biases in the range of 0.6 to 0.9 and −0.5 to 0.2 K, respectively. The cross-platform consistency of the retrieval was found to be within ~ 0.3 K. For one lake, the satellite-derived trend was compared with the trend of in situ measurements and both were found to be similar. Thus, orbital drift is not causing artificial temperature trends in the data set. A comparison with LSWT derived through global sea surface temperature (SST) algorithms shows lower RMSEs and biases for the simulation-based approach. A running project will apply the developed method to retrieve LSWT for all of Europe to derive the climate signal of the last 30 years. The data are available at doi:10.1594/PANGAEA.831007.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A total knee arthroplasty performed with navigation results in more accurate component positioning with fewer outliers. It is not known whether image-based or image-free-systems are preferable and if navigation for only one component leads to equal accuracy in leg alignment than navigation of both components. We evaluated the results of total knee arthroplasties performed with femoral navigation. We studied 90 knees in 88 patients who had conventional total knee arthroplasties, image-based total knee arthroplasties, or total knee arthroplasties with image-free navigation. We compared patients' perioperative times, component alignment accuracy, and short-term outcomes. The total surgical time was longer in the image-based total knee arthroplasty group (109 +/- 7 minutes) compared with the image-free (101 +/- 17 minutes) and conventional total knee arthroplasty groups (87 +/- 20 minutes). The mechanical axis of the leg was within 3 degrees of neutral alignment, although the conventional total knee arthroplasty group showed more (10.6 degrees ) variance than the navigated groups (5.8 degrees and 6.4 degrees , respectively). We found a positive correlation between femoral component malalignment and the total mechanical axis in the conventional group. Our results suggest image-based navigation is not necessary, and image-free femoral navigation may be sufficient for accurate component alignment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective In order to benefit from the obvious advantages of minimally invasive liver surgery there is a need to develop high precision tools for intraoperative anatomical orientation, navigation and safety control. In a pilot study we adapted a newly developed system for computer-assisted liver surgery (CALS) in terms of accuracy and technical feasibility to the specific requirements of laparoscopy. Here, we present practical aspects related to laparoscopic computer assisted liver surgery (LCALS). Methods Our video relates to a patient presenting with 3 colorectal liver metastases in Seg. II, III and IVa who was selected in an appropriate oncological setting for LCALS using the CAScination system combined with 3D MEVIS reconstruction. After minimal laparoscopic mobilization of the liver, a 4- landmark registration method was applied to enable navigation. Placement of microwave needles was performed using the targeting module of the navigation system and correct needle positioning was confirmed by intraoperative sonography. Ablation of each lesion was carried out by application of microwave energy at 100 Watts for 1 minute. Results To acquire an accurate (less 0.5 cm) registration, 4 registration cycles were necessary. In total, seven minutes were required to accomplish precise registration. Successful ablation with complete response in all treated areas was assessed by intraoperative sonography and confirmed by postoperative CT scan. Conclusions This teaching video demonstrates the theoretical and practical key points of LCALS with a special emphasis on preoperative planning, intraoperative registration and accuracy testing by laparoscopic methodology. In contrast to mere ultrasound-guided ablation of liver lesions, LCALS offers a more dimensional targeting and higher safety control. This is currently also in routine use to treat vanishing lesions and other difficult to target focal lesions within the liver.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper examines the social impacts of weather extremes and the processes of social and communicative learning a society undertakes to find alternative ways to deal with the consequences of a crisis. In the beginning of the 20th Century hunger seemed to be expelled from Europe. Switzerland – like many other European countries – was involved in a global interdependent trade system, which provided necessary goods. But at the end of World War I very cold and wet summers in 1916/17 (causing crop failure) and the difficulties in war-trade led to malnutrition and enormous price risings of general living-standards in Switzerland, which shocked the people and caused revolutionary uprisings in 1918. The experience of malnutrition during the last two years of war made clear that the traditional ways of food supply in Switzerland lacked crisis stability. Therefore various agents in the field of food production, distribution and consumption searched for alternative ways of food supply. In that sense politicians, industrialists, consumer-groups, left-wing communitarians and farmers developed several strategies for new ways in food production. Traditionally there were political conflicts in Switzerland between farmers and consumers regarding price policies, which led mainly to the conflict in 1918. Consumers accused famers of holding back food to control extortionate prices while the farmers pointed to the bad harvest causing the price rising. The collaboration of these groups in search for new forms of food-stability made social integration possible again. In addition to other crisis-factors, weather extremes can have disastrous impacts and destroy a society’s self-confidence to its core. But even such crisis can lead to processes of substantial learning that allows a regeneration of confidence and show positive influence on political stabilization. The paper focuses on the process of learning and the alternative methods of food production that were suggested by various agents working in the field during the Interwar period. To achieve that goal documents of the various associations are analyzed and newspapers have been taken into consideration. Through the method of discourse-analysis of food-production during the Interwar period, possible solutions that crossed the minds of the agents should be brought to light.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Children typically hold very optimistic views of their own skills but so far, only a few studies have investigated possible correlates of the ability to predict performance accurately. Therefore, this study examined the role of individual differences in performance estimation accuracy as a global metacognitive index for different monitoring and control skills (item-level judgments of learning [JOLs] and confidence judgments [CJs]), metacognitive control processes (allocation of study time and control of answers), and executive functions (cognitive flexibility, inhibition, working memory) in 6-year-olds (N=93). The three groups of under estimators, realists and over estimators differed significantly in their monitoring and control abilities: the under estimators outperformed the over estimators by showing a higher discrimination in CJs between correct and incorrect recognition. Also, the under estimators scored higher on the adequate control of incorrectly recognized items. Regarding the interplay of monitoring and control processes, under estimators spent more time studying items with low JOLs, and relied more systematically on their monitoring when controlling their recognition compared to over estimators. At the same time, the three groups did not differ significantly from each other in their executive functions. Overall, results indicate that differences in performance estimation accuracy are systematically related to other global and item-level metacognitive monitoring and control abilities in children as young as six years of age, while no meaningful association between performance estimation accuracy and executive functions was found.