23 resultados para Gibbs phenomenon
Resumo:
While assisted suicide (AS) is strictly restricted in many countries, it is not clearly regulated by law in Switzerland. This imbalance leads to an influx of people —‘suicide tourists’—coming to Switzerland, mainly to the Canton of Zurich, for the sole purpose of committing suicide. Political debate regarding ‘suicide tourism’ is taking place in many countries. Swiss medicolegal experts are confronted with these cases almost daily, which prompted our scientific investigation of the phenomenon. The present study has three aims: (1) to determine selected details about AS in the study group (age, gender and country of residence of the suicide tourists, the organisation involved, the ingested substance leading to death and any diseases that were the main reason for AS); (2) to find out the countries from which suicide tourists come and to review existing laws in the top three in order to test the hypothesis that suicide tourism leads to the amendment of existing regulations in foreign countries; and (3) to compare our results with those of earlier studies in Zurich. We did a retrospective data analysis of the Zurich Institute of Legal Medicine database on AS of on-Swiss residents in the last 5 years (2008–2012), and internet research for current legislation and political debate in the three foreign countries most concerned. We analysed 611 cases from 31 countries all over the world. Non-terminal conditions such as neurological and rheumatic diseases are increasing among suicide tourists. The unique phenomenon of suicide tourism in Switzerland may indeed result in the amendment or supplementary guidelines to existing regulations in foreign countries.
Resumo:
An axisymmetric, elastic pipe is filled with an incompressible fluid and is immersed in a second, coaxial rigid pipe which contains the same fluid. A pressure pulse in the outer fluid annulus deforms the elastic pipe which invokes a fluid motion in the fluid core. It is the aim of this study to investigate streaming phenomena in the core which may originate from such a fluid-structure interaction. This work presents a numerical solver for such a configuration. It was developed in the OpenFOAM software environment and is based on the Arbitrary Lagrangian Eulerian (ALE) approach for moving meshes. The solver features a monolithic integration of the one-dimensional, coupled system between the elastic structure and the outer fluid annulus into a dynamic boundary condition for the moving surface of the fluid core. Results indicate that our configuration may serve as a mechanical model of the Tullio Phenomenon (sound-induced vertigo).