23 resultados para Geo-mashups
Resumo:
This document describes a possible use for the YouReputation API. A mashup combining the YouReputation and the Flickr APIs attempts to improve the visualization of reputation. First, this paper gives an introduction to Web services and APIs and further explains the developed prototype. This paper introduces an API that can be easily combined with other APIs to improve the representation of reputation terms and therefore enhance usability and design.
Resumo:
In this paper we present the results from the coverage and the orbit determination accuracy simulations performed within the recently completed ESA study “Assessment Study for Space Based Space Surveillance (SBSS) Demonstration System” (Airbus Defence and Space consortium). This study consisted in investigating the capability of a space based optical sensor (SBSS) orbiting in low Earth orbit (LEO) to detect and track objects in GEO (geosynchronous orbit), MEO (medium Earth orbit) and LEO and to determinate and improve initial orbits from such observations. Space based systems may achieve better observation conditions than ground based sensors in terms of astrometric accuracy, detection coverage, and timeliness. The primary observation mode of the proposed SBSS demonstrator is GEO surveillance, i.e. the systematic search and detection of unknown and known objects. GEO orbits are specific and unique orbits from dynamical point of view. A space-based sensor may scan the whole GEO ring within one sidereal day if the orbit and pointing directions are chosen properly. For an efficient survey, our goal was to develop a leak-proof GEO fence strategy. Collaterally, we show that also MEO, LEO and other (GTO,Molniya, etc.) objects would be possible to observe by the system and for a considerable number of LEO objects to down to size of 1 cm we can obtain meaningful statistical data for improvement and validation of space debris environment models
Resumo:
Until today, most of the documentation of forensic relevant medical findings is limited to traditional 2D photography, 2D conventional radiographs, sketches and verbal description. There are still some limitations of the classic documentation in forensic science especially if a 3D documentation is necessary. The goal of this paper is to demonstrate new 3D real data based geo-metric technology approaches. This paper present approaches to a 3D geo-metric documentation of injuries on the body surface and internal injuries in the living and deceased cases. Using modern imaging methods such as photogrammetry, optical surface and radiological CT/MRI scanning in combination it could be demonstrated that a real, full 3D data based individual documentation of the body surface and internal structures is possible in a non-invasive and non-destructive manner. Using the data merging/fusing and animation possibilities, it is possible to answer reconstructive questions of the dynamic development of patterned injuries (morphologic imprints) and to evaluate the possibility, that they are matchable or linkable to suspected injury-causing instruments. For the first time, to our knowledge, the method of optical and radiological 3D scanning was used to document the forensic relevant injuries of human body in combination with vehicle damages. By this complementary documentation approach, individual forensic real data based analysis and animation were possible linking body injuries to vehicle deformations or damages. These data allow conclusions to be drawn for automobile accident research, optimization of vehicle safety (pedestrian and passenger) and for further development of crash dummies. Real 3D data based documentation opens a new horizon for scientific reconstruction and animation by bringing added value and a real quality improvement in forensic science.
Resumo:
Currently several thousands of objects are being tracked in the MEO and GEO regions through optical means. The problem faced in this framework is that of Multiple Target Tracking (MTT). In this context both the correct associations among the observations, and the orbits of the objects have to be determined. The complexity of the MTT problem is defined by its dimension S. Where S stands for the number of ’fences’ used in the problem, each fence consists of a set of observations that all originate from dierent targets. For a dimension of S ˃ the MTT problem becomes NP-hard. As of now no algorithm exists that can solve an NP-hard problem in an optimal manner within a reasonable (polynomial) computation time. However, there are algorithms that can approximate the solution with a realistic computational e ort. To this end an Elitist Genetic Algorithm is implemented to approximately solve the S ˃ MTT problem in an e cient manner. Its complexity is studied and it is found that an approximate solution can be obtained in a polynomial time. With the advent of improved sensors and a heightened interest in the problem of space debris, it is expected that the number of tracked objects will grow by an order of magnitude in the near future. This research aims to provide a method that can treat the correlation and orbit determination problems simultaneously, and is able to e ciently process large data sets with minimal manual intervention.