126 resultados para Genome Rearrangements
Resumo:
Background: ;Rates of molecular evolution vary widely among species. While significant deviations from molecular clock have been found in many taxa, effects of life histories on molecular evolution are not fully understood. In plants, annual/perennial life history traits have long been suspected to influence the evolutionary rates at the molecular level. To date, however, the number of genes investigated on this subject is limited and the conclusions are mixed. To evaluate the possible heterogeneity in evolutionary rates between annual and perennial plants at the genomic level, we investigated 85 nuclear housekeeping genes, 10 non-housekeeping families, and 34 chloroplast;genes using the genomic data from model plants including Arabidopsis thaliana and Medicago truncatula for annuals and grape (Vitis vinifera) and popular (Populus trichocarpa) for perennials.;Results: ;According to the cross-comparisons among the four species, 74-82% of the nuclear genes and 71-97% of the chloroplast genes suggested higher rates of molecular evolution in the two annuals than those in the two perennials. The significant heterogeneity in evolutionary rate between annuals and perennials was consistently found both in nonsynonymous sites and synonymous sites. While a linear correlation of evolutionary rates in orthologous genes between species was observed in nonsynonymous sites, the correlation was weak or invisible in synonymous sites. This tendency was clearer in nuclear genes than in chloroplast genes, in which the overall;evolutionary rate was small. The slope of the regression line was consistently lower than unity, further confirming the higher evolutionary rate in annuals at the genomic level.;Conclusions: ;The higher evolutionary rate in annuals than in perennials appears to be a universal phenomenon both in nuclear and chloroplast genomes in the four dicot model plants we investigated. Therefore, such heterogeneity in evolutionary rate should result from factors that have genome-wide influence, most likely those associated with annual/perennial life history. Although we acknowledge current limitations of this kind of study, mainly due to a small sample size available and a distant taxonomic relationship of the model organisms, our results indicate that the genome-wide survey is a promising approach toward further understanding of the;mechanism determining the molecular evolutionary rate at the genomic level.
Resumo:
The heritability of attention deficit hyperactivity disorder (ADHD) is approximately 0.8. Despite several larger scale attempts, genome-wide association studies (GWAS) have not led to the identification of significant results. We performed a GWAS based on 495 German young patients with ADHD (according to DSM-IV criteria; Human660W-Quadv1; Illumina, San Diego, CA) and on 1,300 population-based adult controls (HumanHap550v3; Illumina). Some genes neighboring the single nucleotide polymorphisms (SNPs) with the lowest P-values (best P-value: 8.38 × 10(-7)) have potential relevance for ADHD (e.g., glutamate receptor, metabotropic 5 gene, GRM5). After quality control, the 30 independent SNPs with the lowest P-values (P-values ≤ 7.57 × 10(-5) ) were chosen for confirmation. Genotyping of these SNPs in up to 320 independent German families comprising at least one child with ADHD revealed directionally consistent effect-size point estimates for 19 (10 not consistent) of the SNPs. In silico analyses of the 30 SNPs in the largest meta-analysis so far (2,064 trios, 896 cases, and 2,455 controls) revealed directionally consistent effect-size point estimates for 16 SNPs (11 not consistent). None of the combined analyses revealed a genome-wide significant result. SNPs in previously described autosomal candidate genes did not show significantly lower P-values compared to SNPs within random sets of genes of the same size. We did not find genome-wide significant results in a GWAS of German children with ADHD compared to controls. The second best SNP is located in an intron of GRM5, a gene located within a recently described region with an infrequent copy number variation in patients with ADHD.
Resumo:
Desulfovibrio sp. A2 is an anaerobic gram-negative sulfate-reducing bacterium with remarkable tolerance to copper. It was isolated from wastewater effluents of a zinc smelter at the Urals. Here, we report the 4.2-Mb draft genome sequence of Desulfovibrio sp. A2 and identify potential copper resistance mechanisms.
Resumo:
We have sequenced the genome of Desulfosporosinus sp. OT, a Gram-positive, acidophilic sulfate-reducing Firmicute isolated from copper tailing sediment in the Norilsk mining-smelting area in Northern Siberia, Russia. This represents the first sequenced genome of a Desulfosporosinus species. The genome has a size of 5.7 Mb and encodes 6,222 putative proteins.
Resumo:
The domestic dog offers a unique opportunity to explore the genetic basis of disease, morphology and behaviour. Humans share many diseases with our canine companions, making dogs an ideal model organism for comparative disease genetics. Using newly developed resources, genome-wide association studies in dog breeds are proving to be exceptionally powerful. Towards this aim, veterinarians and geneticists from 12 European countries are collaborating to collect and analyse the DNA from large cohorts of dogs suffering from a range of carefully defined diseases of relevance to human health. This project, named LUPA, has already delivered considerable results. The consortium has collaborated to develop a new high density single nucleotide polymorphism (SNP) array. Mutations for four monogenic diseases have been identified and the information has been utilised to find mutations in human patients. Several complex diseases have been mapped and fine mapping is underway. These findings should ultimately lead to a better understanding of the molecular mechanisms underlying complex diseases in both humans and their best friend.