20 resultados para Genetic stratigraphic sequences


Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the development of the somatic genome from the Paramecium germline genome the bulk of the copies of ∼45 000 unique, internal eliminated sequences (IESs) are deleted. IES targeting is facilitated by two small RNA (sRNA) classes: scnRNAs, which relay epigenetic information from the parental nucleus to the developing nucleus, and iesRNAs, which are produced and used in the developing nucleus. Why only certain IESs require sRNAs for their removal has been enigmatic. By analyzing the silencing effects of three genes: PGM (responsible for DNA excision), DCL2/3 (scnRNA production) and DCL5 (iesRNA production), we identify key properties required for IES elimination. Based on these results, we propose that, depending on the exact combination of their lengths and end bases, some IESs are less efficiently recognized or excised and have a greater requirement for targeting by scnRNAs and iesRNAs. We suggest that the variation in IES retention following silencing of DCL2/3 is not primarily due to scnRNA density, which is comparatively uniform relative to IES retention, but rather the genetic properties of IESs. Taken together, our analyses demonstrate that in Paramecium the underlying genetic properties of developmentally deleted DNA sequences are essential in determining the sensitivity of these sequences to epigenetic control.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Paleoenvironmental and paleoclimate reconstructions based on molecular proxies, such as those derived from leaf-wax biomarkers, in loess-paleosol sequences represent a promising line of investigation in Quaternary research. The main premise of such reconstructions is the synsedimentary deposition of biomarkers and dust, which has become a debated subject in recent years. This study uses two independent approaches to test the stratigraphic integrity of leaf-wax biomarkers: (i) long-chain n-alkanes and fatty acids are quantified in two sediment-depth profiles in glacial till on the Swiss Plateau, consisting of a Holocene topsoil and the underlying B and C horizons. Since glacial sediments are initially very poor in organic matter, significant amounts of leaf-wax biomarkers in the B and C horizons of those profiles would reflect postsedimentary root-derived or microbial contributions. (ii) Compound-specific radiocarbon measurements are conducted on n-alkanes and n-alkanoic (fatty) acids from several depth intervals in the loess section "Crvenka", Serbia, and the results are compared to independent estimates of sediment age. We find extremely low concentrations of plant-wax n-alkanes and fatty acids in the B and C horizons below the topsoils in the sediment profiles. Moreover, compound-specific radiocarbon analysis yields plant-wax 14C ages that agree well with published luminescence ages and stratigraphy of the Serbian loess deposit. Both approaches confirm that postsedimentary, root-derived or microbial contributions are negligible in the two investigated systems. The good agreement between the ages of odd and even homologues also indicates that reworking and incorporation of fossil leaf waxes is not particularly relevant either.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Schmallenberg virus (SBV), an arthropod-borne orthobunyavirus was first detected in 2011 in cattle suffering from diarrhea and fever. The most severe impact of an SBV infection is the induction of malformations in newborns and abortions. Between 2011 and 2013 SBV spread throughout Europe in an unprecedented epidemic wave. SBV contains a tripartite genome consisting of the three negative-sense RNA segments L, M, and S. The virus is usually isolated from clinical samples by inoculation of KC (insect) or BHK-21 (mammalian) cells. Several virus passages are required to allow adaptation of SBV to cells in vitro. In the present study, the porcine SK-6 cell line was used for isolation and passaging of SBV. SK-6 cells proved to be more sensitive to SBV infection and allowed to produce higher titers more rapidly as in BHK-21 cells after just one passage. No adaptation was required. In order to determine the in vivo genetic stability of SBV during an epidemic spread of the virus the nucleotide sequence of the genome from seven SBV field isolates collected in summer 2012 in Switzerland was determined and compared to other SBV sequences available in GenBank. A total of 101 mutations, mostly transitions randomly dispersed along the L and M segment were found when the Swiss isolates were compared to the first SBV isolated late 2011 in Germany. However, when these mutations were studied in detail, a previously described hypervariable region in the M segment was identified. The S segment was completely conserved among all sequenced SBV isolates. To assess the in vitro genetic stability of SBV, three isolates were passage 10 times in SK-6 cells and sequenced before and after passaging. Between two and five nt exchanges per genome were found. This low in vitro mutation rate further demonstrates the suitability of SK-6 cells for SBV propagation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During infections, Giardia lamblia undergoes a continuous change of its major surface antigens, the variant-specific surface proteins (VSPs). Many studies on antigenic variation have been performed using G. lamblia clone GS/M-83-H7, which expresses surface antigen VSP H7. The present study was focused on the identification and characterization of vsp gene sequences within the genome of the clonal G. lamblia GS/M-83-H7 line. For this purpose, we applied a PCR which specifically amplified truncated sequences from the 3'-terminal region of the vsp genes. Upon cloning, most of the vsp gene amplification products were shown to be approximately identical in size and thus could not be distinguished from each other by conventional gel electrophoresis. In order to pre-estimate the sequence complexity within the large panel of vsp clones isolated, we elaborated a novel concept which facilitated our large-scale genetic screening approach: PCR products from cloned DNA molecules were generated and then subjected to a DNA melting profile assay based on the use of the LightCycler Instrument. This high-throughput assay system proved to be well suited to monitor sequence differences between the amplification products from closely related vsp genes and thus could be used for the primary, sequence-related discrimination of the corresponding clones. After testing 50 candidates, vsp clones could be divided into five groups, each characterized by an individual DNA melting profile of the corresponding amplification products. Sequence analysis of some of these 50 candidates confirmed data from the aforementioned assay in that clones were demonstrated to be identical within, but different between, the distinct groups. The nucleotide and deduced amino acid sequences of five representative vsp clones showed high similarities both among each other and also with the corresponding gene segment of the variant-specific surface antigen (VSP H7) expressed by the original GS/M-83-H7 variant type. Furthermore, three of the genomic vsp sequences turned out to be identical to vsp sequences that represented previously characterized transcription products from in vivo- or in vitro-switched GS/M-83-H7 trophozoites. In conclusion, the DNA melting profile assay seems to be a versatile tool for the PCR-based genotyping of moderately or highly diversified sequence orthologues.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nucleic acids play key roles in the storage and processing of genetic information, as well as in the regulation of cellular processes. Consequently, they represent attractive targets for drugs against gene-related diseases. On the other hand, synthetic oligonucleotide analogues have found application as chemotherapeutic agents targeting cellular DNA and RNA. The development of effective nucleic acid-based chemotherapeutic strategies requires adequate analytical techniques capable of providing detailed information about the nucleotide sequences, the presence of structural modifications, the formation of higher-order structures, as well as the interaction of nucleic acids with other cellular components and chemotherapeutic agents. Due to the impressive technical and methodological developments of the past years, tandem mass spectrometry has evolved to one of the most powerful tools supporting research related to nucleic acids. This review covers the literature of the past decade devoted to the tandem mass spectrometric investigation of nucleic acids, with the main focus on the fundamental mechanistic aspects governing the gas-phase dissociation of DNA, RNA, modified oligonucleotide analogues, and their adducts with metal ions. Additionally, recent findings on the elucidation of nucleic acid higher-order structures by tandem mass spectrometry are reviewed.